Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

On irregular prime power divisors of the Bernoulli numbers


Author: Bernd C. Kellner
Journal: Math. Comp. 76 (2007), 405-441
MSC (2000): Primary 11B68; Secondary 11M06, 11R23
DOI: https://doi.org/10.1090/S0025-5718-06-01887-4
Published electronically: August 1, 2006
MathSciNet review: 2261029
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ B_n$ ( $ n = 0, 1, 2, \ldots$) denote the usual $ n$th Bernoulli number. Let $ l$ be a positive even integer where $ l=12$ or $ l \geq 16$. It is well known that the numerator of the reduced quotient $ \vert B_l/l\vert$ is a product of powers of irregular primes. Let $ (p,l)$ be an irregular pair with $ B_l/l \not\equiv B_{l+p-1}/(l+p-1) \operatorname{mod}{p^2}$. We show that for every $ r \geq 1$ the congruence $ B_{m_r}/m_r \equiv 0 \operatorname{mod}{p^r}$ has a unique solution $ m_r$ where $ m_r \equiv l \operatorname{mod}{p-1}$ and $ l \leq m_r < (p-1)p^{r-1}$. The sequence $ (m_r)_{r \geq 1}$ defines a $ p$-adic integer $ \chi_{(p,\,l)}$ which is a zero of a certain $ p$-adic zeta function $ \zeta_{p,\,l}$ originally defined by T. Kubota and H. W. Leopoldt. We show some properties of these functions and give some applications. Subsequently we give several computations of the (truncated) $ p$-adic expansion of $ \chi_{(p,\,l)}$ for irregular pairs $ (p,l)$ with $ p$ below 1000.


References [Enhancements On Off] (What's this?)

  • 1. J. C. Adams,
    Table of the values of the first sixty-two numbers of Bernoulli,
    J. Reine Angew. Math. 85 (1878), 269-272.
  • 2. J. Buhler, R. Crandall, R. Ernvall, T. Metsänkylä, and M. A. Shokrollahi,
    Irregular primes and cyclotomic invariants to 12 million,
    J. Symb. Comput. 31 (2001), no. 1-2, 89-96. MR 1806208 (2001m:11220)
  • 3. L. Carlitz,
    Some theorems on Kummer's congruences,
    Duke Math. J. 20 (1953), 423-431. MR 0056009 (15:10f)
  • 4. L. Carlitz,
    Note on irregular primes,
    Proc. Amer. Math. Soc. 5 (1954), 329-331. MR 0061124 (15:778b)
  • 5. L. Carlitz,
    Kummer's congruence for the Bernoulli numbers,
    Port. Math. 19 (1960), 203-210. MR 0125054 (23:A2361)
  • 6. T. Clausen,
    Lehrsatz aus einer Abhandlung über die Bernoullischen Zahlen,
    Astr. Nachr. 17 (1840), 351-352.
  • 7. J. Fresnel,
    Nombres de Bernoulli et fonctions $ L$ $ p$-adiques,
    Ann. Inst. Fourier 17 (1967), no. 2, 281-333. MR 0224570 (37:169)
  • 8. R. Greenberg,
    Iwasawa Theory -- past and present,
    Adv. Stud. Pure Math. 30 (2001), 335-385. MR 1846466 (2002f:11152)
  • 9. K. Ireland and M. Rosen,
    A Classical Introduction to Modern Number Theory, Graduate Texts in Mathematics, vol. 84,
    Springer-Verlag, 2nd edition, 1990. MR 1070716 (92e:11001)
  • 10. W. Johnson,
    Irregular prime divisors of the Bernoulli numbers,
    Math. Comp. 28 (1974), no. 126, 653-657. MR 0347727 (50:229)
  • 11. B. C. Kellner,
    Über irreguläre Paare höherer Ordnungen,
    Diplomarbeit, Mathematisches Institut der Georg-August-Universität zu Göttingen, Germany, 2002. (Also available at http://www.bernoulli.org/$ \sim$bk/irrpairord.pdf)
  • 12. N. Koblitz,
    $ p$-adic Numbers, $ p$-adic Analysis and Zeta-Functions, Graduate Texts in Mathematics, vol. 58,
    Springer-Verlag, 2nd edition, 1996. MR 0754003 (86c:11086)
  • 13. T. Kubota and H. W. Leopoldt,
    Eine $ p$-adische Theorie der Zetawerte, I: Einführung der $ p$-adischen Dirichletschen $ L$-Funktionen,
    J. Reine Angew. Math. 214/215 (1964), 328-339. MR 0163900 (29:1199)
  • 14. E. E. Kummer,
    Allgemeiner Beweis des Fermat'schen Satzes, dass die Gleichung $ x^{\lambda}+y^{\lambda}=z^{\lambda}$ durch ganze Zahlen unlösbar ist, für alle diejenigen Potenz-Exponenten $ \lambda$, welche ungerade Primzahlen sind und in den Zählern der ersten $ ({\lambda}-3)/2$ Bernoulli'schen Zahlen als Factoren nicht vorkommen,
    J. Reine Angew. Math. 40 (1850), 130-138.
  • 15. E. E. Kummer,
    Über eine allgemeine Eigenschaft der rationalen Entwicklungscoefficienten einer bestimmten Gattung analytischer Functionen,
    J. Reine Angew. Math. 41 (1851), 368-372.
  • 16. F. Pollaczek,
    Über die irregulären Kreiskörper der $ l$-ten und $ l^2$-ten Einheitswurzeln,
    Math. Z. 21 (1924), 1-38. 50.0111.02
  • 17. A. M. Robert,
    A Course in $ p$-adic Analysis, Graduate Texts in Mathematics, vol. 198,
    Springer-Verlag, 2000. MR 1760253 (2001g:11182)
  • 18. C. L. Siegel,
    Zu zwei Bemerkungen Kummers,
    Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II 6 (1964), 51-57. MR 0163899 (29:1198)
  • 19. H. S. Vandiver,
    On Bernoulli's numbers and Fermat's last theorem,
    Duke Math. J. 3 (1937), 569-584. MR 1546011
  • 20. K. G. C. von Staudt,
    Beweis eines Lehrsatzes die Bernoulli'schen Zahlen betreffend,
    J. Reine Angew. Math. 21 (1840), 372-374.
  • 21. S. S. Wagstaff, Jr.,
    The irregular primes to $ 125000$,
    Math. Comp. 32 (1978), no. 142, 583-591. MR 0491465 (58:10711)
  • 22. S. S. Wagstaff, Jr.,
    Prime divisors of the Bernoulli and Euler numbers,
    Millennial Conference on Number Theory, 2000. MR 1956285 (2003m:11039)
  • 23. L. C. Washington,
    Introduction to Cyclotomic Fields, Graduate Texts in Mathematics, vol. 83,
    Springer-Verlag, 2nd edition, 1997. MR 1421575 (97h:11130)
  • 24. I. Yamaguchi,
    On a Bernoulli numbers conjecture,
    J. Reine Angew. Math. 288 (1976), 168-175. MR 0424669 (54:12628)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 11B68, 11M06, 11R23

Retrieve articles in all journals with MSC (2000): 11B68, 11M06, 11R23


Additional Information

Bernd C. Kellner
Affiliation: Mathematisches Institut, Universität Göttingen, Bunsenstr. 3–5, 37073 Göttingen, Germany
Email: bk@bernoulli.org

DOI: https://doi.org/10.1090/S0025-5718-06-01887-4
Keywords: Bernoulli number, Riemann zeta function, $p$-adic zeta function, Kummer congruences, irregular prime power, irregular pair of higher order
Received by editor(s): June 15, 2005
Received by editor(s) in revised form: September 4, 2005
Published electronically: August 1, 2006
Article copyright: © Copyright 2006 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society