Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

A posteriori error analysis for locally conservative mixed methods


Author: Kwang Y. Kim
Journal: Math. Comp. 76 (2007), 43-66
MSC (2000): Primary 65N30; Secondary 65N15
DOI: https://doi.org/10.1090/S0025-5718-06-01903-X
Published electronically: October 4, 2006
MathSciNet review: 2261011
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this work we present a theoretical analysis for a residual-type error estimator for locally conservative mixed methods. This estimator was first introduced by Braess and Verfürth for the Raviart-Thomas mixed finite element method working in mesh-dependent norms. We improve and extend their results to cover any locally conservative mixed method under minimal assumptions, in particular, avoiding the saturation assumption made by Braess and Verfürth. Our analysis also takes into account discontinuous coefficients with possibly large jumps across interelement boundaries. The main results are applied to the $ P1$ nonconforming finite element method and the interior penalty discontinuous Galerkin method as well as the mixed finite element method.


References [Enhancements On Off] (What's this?)

  • 1. M. Ainsworth and J. T. Oden, A posteriori error estimation in finite element analysis, John Wiley & Sons, 2000. MR 1885308 (2003b:65001) 15pt
  • 2. A. Alonso, Error estimators for a mixed method, Numer. Math. 74 (1996), no. 4, 385-395. MR 1414415 (97g:65212)
  • 3. D. N. Arnold, An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal. 19 (1982), no. 4, 742-760. MR 0664882 (83f:65173)
  • 4. P. Bastian and B. Riviére, Superconvergence and $ H({\rm div})$ projection for discontinuous Galerkin methods, Internat. J. Numer. Methods Fluids 42 (2003), no. 10, 1043-1057. MR 1991232 (2004f:65177)
  • 5. C. Bernardi and R. Verfürth, Adaptive finite element methods for elliptic equations with non-smooth coefficients, Numer. Math. 85 (2000), no. 4, 579-608. MR 1771781 (2001e:65177)
  • 6. D. Braess, O. Klaas, R. Niekamp, E. Stein and F. Wobschal, Error indicators for mixed finite elements in 2-dimensional linear elasticity, Comput. Methods Appl. Mech. Engrg. 127 (1995), no. 1-4, 345-356. MR 1365378 (96h:73045)
  • 7. D. Braess and R. Verfürth, A posteriori error estimators for the Raviart-Thomas element, SIAM J. Numer. Anal. 33 (1996), no. 6, 2431-2444. MR 1427472 (97m:65201)
  • 8. F. Brezzi and M. Fortin, Mixed and hybrid finite element methods, Springer-Verlag, 1991. MR 1115205 (92d:65187)
  • 9. C. Carstensen, A posteriori error estimate for the mixed finite element method, Math. Comp. 66 (1997), no. 218, 465-476. MR 1408371 (98a:65162)
  • 10. Z. Cai, J. E. Jones, S. F. McCormick and T. F. Russell, Control-volume mixed finite element methods, Comput. Geosci. 1 (1997), no. 3-4, 289-315. MR 1690491 (2000a:76106)
  • 11. Z. Chen and S. Dai, On the efficiency of adaptive finite element methods for elliptic problems with discontinuous coefficients, SIAM J. Sci. Comput. 24 (2002), no. 2, 443-462. MR 1951050 (2003k:65160)
  • 12. S. H. Chou, D. Y. Kwak and K. Y. Kim, A general framework for constructing and analyzing mixed finite volume methods on quadrilateral grids: the overlapping covolume case, SIAM J. Numer. Anal. 39 (2001), no. 4, 1170-1196. MR 1870838 (2002j:65109)
  • 13. S. H. Chou, D. Y. Kwak and K. Y. Kim, Mixed finite volume methods on nonstaggered quadrilateral grids for elliptic problems, Math. Comp. 72 (2003), no. 242, 525-539. MR 1954955 (2004a:65136)
  • 14. M. Crouzeix and P. A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations, R.A.I.R.O. 7 (1973), no. R-3, 33-75. MR 0343661 (49:8401)
  • 15. O. Karakashian and F. Pascal, A posteriori error estimates for a discontinuous Galerkin approximation of second-order elliptic problems, SIAM J. Numer. Anal. 41 (2003), no. 6, 2374-2399. MR 2034620 (2005d:65192)
  • 16. K. Y. Kim, New mixed finite volume methods for second order elliptic problems, to appear in ESAIM: M2AN.
  • 17. B. Riviére, M. F. Wheeler and V. Girault, A priori error estimates for finite element methods based on discontinuous approximation spaces for elliptic problems, SIAM J. Numer. Anal. 39 (2001), no. 3, 902-931. MR 1860450 (2002g:65149)
  • 18. J. E. Roberts and J. M. Thomas, Mixed and hybrid methods, in Handbook of Numerical Analysis, Vol. II, 523-639, North-Holland, 1991.MR 1115239
  • 19. R. Stenberg, Postprocessing schemes for some mixed finite elements, RAIRO Modél. Math. Anal. Numér. 25 (1991), no. 1, 151-167. MR 1086845 (92a:65303)
  • 20. R. Verfürth, A review of a posteriori error estimation and adaptive mesh-refinement techniques, Wiley-Teubner, 1996.
  • 21. B. Wohlmuth, A residual based error estimator for mortar finite element discretizations, Numer. Math. 84 (1999), no. 1, 143-171. MR 1724340 (2000h:65155)
  • 22. B. Wohlmuth and R. Hoppe, A comparison of a posteriori error estimators for mixed finite element discretizations by Raviart-Thomas elements, Math. Comp. 68 (1999), no. 228, 1347-1378. MR 1651760 (99m:65222)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 65N30, 65N15

Retrieve articles in all journals with MSC (2000): 65N30, 65N15


Additional Information

Kwang Y. Kim
Affiliation: Department of Aerospace Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea 305–701
Email: toheart@acoustic.kaist.ac.kr

DOI: https://doi.org/10.1090/S0025-5718-06-01903-X
Keywords: a posteriori error analysis, locally conservative mixed methods, mixed finite element methods, nonconforming finite element methods, discontinuous Galerkin methods
Received by editor(s): January 16, 2005
Received by editor(s) in revised form: September 27, 2005
Published electronically: October 4, 2006
Additional Notes: This work was supported by the Brain Korea 21 project, Korea.
Article copyright: © Copyright 2006 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society