Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



The 192 solutions of the Heun equation

Author: Robert S. Maier
Journal: Math. Comp. 76 (2007), 811-843
MSC (2000): Primary 33E30; Secondary 33-04, 34M15, 33C05, 20F55
Published electronically: November 28, 2006
MathSciNet review: 2291838
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A machine-generated list of $ 192$ local solutions of the Heun equation is given. They are analogous to Kummer's $ 24$ solutions of the Gauss hypergeometric equation, since the two equations are canonical Fuchsian differential equations on the Riemann sphere with four and three singular points, respectively. Tabulation is facilitated by the identification of the automorphism group of the equation with $ n$ singular points as the Coxeter group  $ \mathcal{D}_n$. Each of the $ 192$ expressions is labeled by an element of  $ \mathcal{D}_4$. Of the $ 192$, $ 24$ are equivalent expressions for the local Heun function  $ \mathop{{}\it Hl}\nolimits $, and it is shown that the resulting order-$ 24$ group of transformations of  $ \mathop{{}\it Hl}\nolimits $ is isomorphic to the symmetric group $ S_4$. The isomorphism encodes each transformation as a permutation of an abstract four-element set, not identical to the set of singular points.

References [Enhancements On Off] (What's this?)

  • 1. M. Abramowitz and I. A. Stegun, editors.
    Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables.
    Number 55 in Applied Mathematics Series. National Bureau of Standards, Washington, DC, 1964. MR 0167642 (29:4914)
  • 2. G. E. Andrews, R. Askey, and R. Roy.
    Special Functions, volume 71 of Encyclopedia of Mathematics and its Applications.
    Cambridge University Press, Cambridge, UK, 1999. MR 1688958 (2000g:33001)
  • 3. M. Baake.
    Structure and representations of the hyperoctahedral group.
    J. Math. Phys., 25(11):3171-3182, 1984. MR 0761836 (85j:20008)
  • 4. F. Brenti.
    $ q$-Eulerian polynomials arising from Coxeter groups.
    European J. Combin., 15(5):417-441, 1994. MR 1292954 (95i:05013)
  • 5. B. Dwork.
    On Kummer's twenty-four solutions of the hypergeometric differential equation.
    Trans. Amer. Math. Soc., 285(2):497-521, 1984. MR 0752488 (86a:12002)
  • 6. A. Erdélyi, editor.
    Higher Transcendental Functions.
    McGraw-Hill, New York, 1953-55.
    Also known as The Bateman Manuscript Project.
  • 7. K. Franz.
    Untersuchungen über die lineare homogene Differentialgleichung 2. Ordnung der Fuchs'schen Klasse mit drei im Endlichen gelegenen singulären Stellen.
    Inaugural dissertation, Friedrichs-Universität Halle-Wittenberg, 1898.
  • 8. F. Gesztesy and R. Weikard.
    Treibich-Verdier potentials and the stationary (m)KdV hierarchy.
    Math. Z., 219(3):451-476, 1995. MR 1339715 (96e:14030)
  • 9. J. J. Gray.
    Linear Differential Equations and Group Theory.
    Birkhäuser, Boston/Basel, 2nd edition, 2000. MR 1751835 (2000m:34002)
  • 10. L. C. Grove and C. T. Benson.
    Finite Reflection Groups.
    Springer-Verlag, New York/Berlin, 2nd edition, 1985. MR 0777684 (85m:20001)
  • 11. K. Heun.
    Zur Theorie der Riemann'schen Functionen zweiter Ordnung mit vier Verzweigungspunkten.
    Math. Ann., 33:161-179, 1889.
  • 12. E. L. Ince.
    Ordinary Differential Equations.
    Dover, New York, 1944;
    reprint of the 1926 edition. MR 0010757 (6:65f)
  • 13. E. E. Kummer.
    Über die hypergeometrische Reihe $ 1 + \frac {\alpha.\beta} {1.\gamma} x + \frac {\alpha(\alpha+1)\beta(\beta+1)}... ...lpha+2)\beta(\beta+1)(\beta+2)} {1.2.3.\gamma(\gamma+1)(\gamma+2)} x^3 + \ldots$
    J. Reine Angew. Math., 15:39-83, 127-172, 1836.
  • 14. S.-T. Ma.
    Relations Between the Solutions of a Linear Differential Equation of Second Order with Four Regular Singular Points.
    Ph.D. dissertation, University of California, Berkeley, Dept. of Mathematics, 1934.
  • 15. R. S. Maier.
    On reducing the Heun equation to the hypergeometric equation.
    J. Differential Equations, 213(1):171-203, 2005. MR 2139342 (2006a:34245)
  • 16. S. V. Oblezin.
    Discrete symmetries of systems of isomonodromic deformations of second-order Fuchsian differential equations.
    Funct. Anal. Appl., 38(2):111-124, 2004.
    Russian original in Funktsional. Anal. i Prilozhen, 38(2):38-54, 2004. MR 2086626 (2005g:32017)
  • 17. E. G. C. Poole.
    Linear Differential Equations.
    Oxford University Press, Oxford, 1936.
  • 18. R. T. Prosser.
    On the Kummer solutions of the hypergeometric equation.
    Amer. Math. Monthly, 101(6):535-543, 1994. MR 1274975 (95b:33005)
  • 19. A. Ronveaux, editor.
    Heun's Differential Equations.
    Oxford University Press, Oxford, 1995. MR 1392976 (98a:33005)
  • 20. A. Ronveaux.
    Factorization of Heun's differential operator.
    Appl. Math. Comput., 141(1):177-184, 2003. MR 1986079 (2004d:34180)
  • 21. R. Schäfke and D. Schmidt.
    The connection problem for general linear ordinary differential equations at two regular singular points with applications to the theory of special functions.
    SIAM J. Math. Anal., 11(5):848-862, 1980. MR 0586913 (82a:34010a)
  • 22. F. Schmitz and B. Fleck.
    On the propagation of linear 3-D hydrodynamic waves in plane non-isothermal atmospheres.
    Astron. Astrophys. Suppl. Ser., 106(1):129-139, 1994.
  • 23. A. O. Smirnov.
    Elliptic solitons and Heun's equation.
    In V. B. Kuznetsov, editor, The Kowalevski Property, no. 32 in CRM Proc. Lecture Notes, pages 287-305. American Mathematical Society, Providence, RI, 2002. MR 1916788 (2003f:34183)
  • 24. A. O. Smirnov.
    Finite-gap solutions of Fuchsian equations. Lett. Math. Phys. 76(2-3):297-316, 2006. MR 2238723
  • 25. C. Snow.
    Hypergeometric and Legendre Functions with Applications to Integral Equations of Potential Theory.
    Number 19 in Applied Mathematics Series. National Bureau of Standards, Washington, DC, 2nd edition, 1952. MR 0048145 (13:988b)
  • 26. V. S. Varadarajan.
    Linear meromorphic differential equations: A modern point of view.
    Bull. Amer. Math. Soc., 33(1):1-42, 1996. MR 1339809 (96h:34011)
  • 27. V. W. Wakerling.
    The relations between solutions of the differential equation of the second order with four regular singular points.
    Duke Math. J., 16:591-599, 1949. MR 0035347 (11:720e)
  • 28. E. T. Whittaker and G. N. Watson.
    A Course of Modern Analysis.
    Cambridge University Press, Cambridge, UK, 1996, reprint of the fourth (1927) edition. MR 1424469 (97k:01072)
  • 29. M. Yoshida.
    A presentation of the fundamental group of the configuration space of 5 points on the projective line.
    Kyushu J. Math., 48(2):283-289, 1994. MR 1294531 (95f:57003)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 33E30, 33-04, 34M15, 33C05, 20F55

Retrieve articles in all journals with MSC (2000): 33E30, 33-04, 34M15, 33C05, 20F55

Additional Information

Robert S. Maier
Affiliation: Departments of Mathematics and Physics, University of Arizona, Tucson, Arizona 85721

Received by editor(s): August 23, 2004
Received by editor(s) in revised form: February 7, 2006
Published electronically: November 28, 2006
Additional Notes: The author was supported in part by NSF Grant No. PHY-0099484.
Article copyright: © Copyright 2006 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society