On the smallest value of the maximal modulus of an algebraic integer

Authors:
Georges Rhin and Qiang Wu

Journal:
Math. Comp. **76** (2007), 1025-1038

MSC (2000):
Primary 11C08, 11R06, 11Y40

DOI:
https://doi.org/10.1090/S0025-5718-06-01958-2

Published electronically:
December 29, 2006

MathSciNet review:
2291848

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The house of an algebraic integer of degree is the largest modulus of its conjugates. For , we compute the smallest house of degree , say m. As a consequence we improve Matveev's theorem on the lower bound of m We show that, in this range, the conjecture of Schinzel-Zassenhaus is satisfied. The minimal polynomial of any algebraic integer whose house is equal to m is a factor of a bi-, tri- or quadrinomial. The computations use a family of explicit auxiliary functions. These functions depend on generalizations of the integer transfinite diameter of some compact sets in They give better bounds than the classical ones for the coefficients of the minimal polynomial of an algebraic integer whose house is small.

**[DB]**David W. Boyd,*The maximal modulus of an algebraic integer*, Math. Comp.**45**(1985), no. 171, 243–249, S17–S20. MR**790657**, https://doi.org/10.1090/S0025-5718-1985-0790657-8**[PB]**Peter Borwein,*Computational excursions in analysis and number theory*, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, vol. 10, Springer-Verlag, New York, 2002. MR**1912495****[D]**Artūras Dubickas,*On a conjecture of A. Schinzel and H. Zassenhaus*, Acta Arith.**63**(1993), no. 1, 15–20. MR**1201616**, https://doi.org/10.4064/aa-63-1-15-20**[FRSE]**Valérie Flammang, Georges Rhin, and Jean-Marc Sac-Épée,*Integer transfinite diameter and polynomials with small Mahler measure*, Math. Comp.**75**(2006), no. 255, 1527–1540. MR**2219043**, https://doi.org/10.1090/S0025-5718-06-01791-1**[MAR]**Morris Marden,*Geometry of polynomials*, Second edition. Mathematical Surveys, No. 3, American Mathematical Society, Providence, R.I., 1966. MR**0225972****[MAT]**E. M. Matveev,*On the cardinality of algebraic integers*, Mat. Zametki**49**(1991), no. 4, 152–154 (Russian); English transl., Math. Notes**49**(1991), no. 3-4, 437–438. MR**1119233**, https://doi.org/10.1007/BF01158227**[PARI]**C. Batut, K. Belabas, D. Bernardi, H. Cohen and M. Olivier,*GP-Pari version 2.0.12*, 1998.**[SZ]**A. Schinzel and H. Zassenhaus,*A refinement of two theorems of Kronecker*, Michigan Math. J.**12**(1965), 81–85. MR**0175882****[SM]**C. J. Smyth,*On the product of the conjugates outside the unit circle of an algebraic integer*, Bull. London Math. Soc.**3**(1971), 169–175. MR**0289451**, https://doi.org/10.1112/blms/3.2.169**[V]**Paul Voutier,*An effective lower bound for the height of algebraic numbers*, Acta Arith.**74**(1996), no. 1, 81–95. MR**1367580**, https://doi.org/10.4064/aa-74-1-81-95**[WU1]**Qiang Wu,*On the linear independence measure of logarithms of rational numbers*, Math. Comp.**72**(2003), no. 242, 901–911. MR**1954974**, https://doi.org/10.1090/S0025-5718-02-01442-4**[WU2]**Q. Wu,*The smallest Perron numbers (in preparation)*.

Retrieve articles in *Mathematics of Computation*
with MSC (2000):
11C08,
11R06,
11Y40

Retrieve articles in all journals with MSC (2000): 11C08, 11R06, 11Y40

Additional Information

**Georges Rhin**

Affiliation:
UMR CNRS 7122, Département UFR MIM, Université de Metz, Ile du Saulcy, 57045 Metz Cedex 01, France

Email:
rhin@math.univ-metz.fr

**Qiang Wu**

Affiliation:
Department of Mathematics, Southwest University of China, 2 Tiansheng Road Beibei, 400715 Chongqing, China

Email:
qiangwu@swu.edu.cn

DOI:
https://doi.org/10.1090/S0025-5718-06-01958-2

Keywords:
Algebraic integer,
maximal modulus,
Schinzel-Zassenhaus conjecture,
Mahler measure,
Smyth's theorem,
Perron numbers,
explicit auxiliary functions,
integer transfinite diameter.

Received by editor(s):
December 24, 2005

Received by editor(s) in revised form:
December 28, 2005

Published electronically:
December 29, 2006

Additional Notes:
Qiang Wu was supported in part by the Natural Science Foundation of Chongqing grant CSTC no. 2005BB8024

Article copyright:
© Copyright 2006
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.