Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Continuous interior penalty $ hp$-finite element methods for advection and advection-diffusion equations


Authors: Erik Burman and Alexandre Ern
Journal: Math. Comp. 76 (2007), 1119-1140
MSC (2000): Primary 65N30, 65N12, 65N15, 65D05, 65N35
DOI: https://doi.org/10.1090/S0025-5718-07-01951-5
Published electronically: January 24, 2007
MathSciNet review: 2299768
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A continuous interior penalty $ hp$-finite element method that penalizes the jump of the gradient of the discrete solution across mesh interfaces is introduced. Error estimates are obtained for advection and advection-diffusion equations. The analysis relies on three technical results that are of independent interest: an $ hp$-inverse trace inequality, a local discontinuous to continuous $ hp$-interpolation result, and $ hp$-error estimates for continuous $ L^2$-orthogonal projections.


References [Enhancements On Off] (What's this?)

  • 1. I. Babuška and M.R. Dorr, Error estimates for the combined $ h$ and $ p$ versions of the finite element method, Numer. Math. 37 (1981), no. 2, 257-277. MR 623044 (82h:65080)
  • 2. I. Babuška and M. Suri, The $ hp$ version of the finite element method with quasi-uniform meshes, RAIRO, Math. Mod. Numer. Anal. 21 (1987), 199-238. MR 0896241 (88d:65154)
  • 3. I. Babuška and M. Zlámal, Nonconforming elements in the finite element method with penalty, SIAM J. Numer. Anal. 10 (1973), 863-875. MR 0345432 (49:10168)
  • 4. G.A. Baker, Finite element methods for elliptic equations using nonconforming elements, Math. Comp. 31 (1977), no. 137, 45-59. MR 0431742 (55:4737)
  • 5. E. Burman, A unified analysis for conforming and nonconforming stabilized finite element methods using interior penalty, SIAM J. Numer. Anal. 43 (2005), no. 5, 2012-2033 (electronic). MR 2192329
  • 6. E. Burman and A. Ern, Stabilized Galerkin approximation of convection-diffusion-reaction equations: discrete maximum principle and convergence, Math. Comp. 74 (2005), no. 252, 1637-1652 (electronic). MR 2164090 (2006e:65211)
  • 7. -, Continuous interior penalty $ hp$-finite element methods for transport operators, Numerical Mathematics and Advanced Applications (Berlin), Springer, 2006, Enumath 2005 Conf. Proc.
  • 8. E. Burman, M. Fernández, and P. Hansbo, Continuous interior penalty finite element method for the Oseen's equations, SIAM J. Numer. Anal. 44 (2006), 1248-1274. MR 2231863
  • 9. E. Burman and P. Hansbo, Edge stabilization for Galerkin approximations of convection-diffusion-reaction problems, Comput. Methods Appl. Mech. Engrg. 193 (2004), 1437-1453. MR 2068903 (2005d:65186)
  • 10. C. Canuto and A. Quarteroni, Approximation results for orthogonal polynomials in Sobolev spaces, Math. Comp. 38 (1982), 67-86. MR 0637287 (82m:41003)
  • 11. P.J. Davis and P. Rabinowitz, Methods of numerical integration, Computer Science and Applied Mathematics, Academic Press Inc., Orlando, FL, 1984. MR 760629 (86d:65004)
  • 12. J. Douglas Jr. and T. Dupont, Interior penalty procedures for elliptic and parabolic Galerkin methods, Computing Methods in Applied Sciences (Berlin) (R. Glowinski and J.-L. Lions, eds.), Lecture Notes in Physics, vol. 58, Springer-Verlag, 1976, pp. 207-216. MR 440955 (55:13823)
  • 13. L. El Alaoui and A. Ern, Residual and hierarchical a posteriori error estimates for nonconforming mixed finite element methods, M2AN Math. Model. Numer. Anal. 38 (2004), no. 6, 903-929. MR 2108938 (2006a:65147)
  • 14. A. Ern and J.-L. Guermond, Discontinuous Galerkin methods for Friedrichs' systems. I. General theory, SIAM J. Numer. Anal. 44 (2006), 753-778. MR 2218968
  • 15. K. O. Friedrichs, Symmetric positive linear differential equations, Comm. Pure Appl. Math. 11 (1958), 333-418. MR 0100718 (20:7147)
  • 16. R.H.W. Hoppe and B. Wohlmuth, Element-oriented and edge-oriented local error estimators for non-conforming finite element methods, Math. Model. Numer. Anal. 30 (2) (1996), 237-263. MR 1382112 (97e:65124)
  • 17. P. Houston, D. Schötzau, and Th.P. Wihler, Energy norm a posteriori error estimation of $ hp$-adaptive Discontinuous Galerkin methods for elliptic problems, Tech. Report IMA Preprint Series 1985, Institute for Mathematics and its Applications, 2004.
  • 18. P. Houston, Ch. Schwab, and E. Süli, Stabilized $ hp$-finite element methods for first-order hyperbolic problems, SIAM J. Numer. Anal. 37 (2000), no. 5, 1618-1643 (electronic). MR 1759909 (2001f:65135)
  • 19. -, Discontinuous $ hp$-finite element methods for advection-diffusion-reaction problems, SIAM J. Numer. Anal. 39 (2002), no. 6, 2133-2163. MR 1897953 (2003d:65108)
  • 20. P. Houston and E. Süli, Stabilised $ hp$-finite element approximation of partial differential equations with nonnegative characteristic form, Computing 66 (2001), no. 2, 99-119. MR 1825801 (2002c:65211)
  • 21. M. Jensen, Discontinuous Galerkin methods for Friedrichs systems with irregular solutions, Ph.D. thesis, University of Oxford, Oxford, UK, 2004.
  • 22. O. Karakashian and F. Pascal, A posteriori error estimates for a discontinuous Galerkin approximation of second order elliptic problems, SIAM J. Numer. Anal. 41 (2003), no. 6, 2374-2399. MR 2034620 (2005d:65192)
  • 23. J. M. Melenk, $ hp$-interpolation of nonsmooth functions and an application to $ hp$-a posteriori error estimation, SIAM J. Numer. Anal. 43 (2005), no. 1, 127-155 (electronic). MR 2177138
  • 24. A. Quarteroni and A. Valli, Numerical approximation of partial differential equations, Springer Series in Computational Mathematics, vol. 23, Springer-Verlag, 1994. MR 1299729 (95i:65005)
  • 25. Ch. Schwab, $ p$- and $ hp$-finite element methods, Numerical Mathematics and Scientific Computation, The Clarendon Press Oxford University Press, New York, 1998. MR 1695813 (2000d:65003)
  • 26. T. Warburton and J.S. Hesthaven, On the constants in $ hp$-finite element trace inverse inequalities, Comput. Methods Appl. Mech. Engrg. 192 (2003), 2765-2773. MR 1986022 (2004d:65146)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 65N30, 65N12, 65N15, 65D05, 65N35

Retrieve articles in all journals with MSC (2000): 65N30, 65N12, 65N15, 65D05, 65N35


Additional Information

Erik Burman
Affiliation: Institut d’Analyse et Calcul Scientifique (CMCS/IACS), Ecole Polytechnique Fédérale de Lausanne, Station 8, CH-1015 Lausanne, Switzerland
Email: Erik.Burman@epfl.ch

Alexandre Ern
Affiliation: CERMICS, Ecole des Ponts, ParisTech, Champs-sur-Marne, 77455 Marne la Vallée, Cedex 2, France
Email: ern@cermics.enpc.fr

DOI: https://doi.org/10.1090/S0025-5718-07-01951-5
Keywords: Continuous interior penalty, $hp$-finite element method, convection-diffusion, $hp$-interpolation and projection, $hp$-inverse trace inequality
Received by editor(s): January 24, 2005
Received by editor(s) in revised form: March 25, 2006
Published electronically: January 24, 2007
Article copyright: © Copyright 2007 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society