Constructing representations of higher degrees of finite simple groups and covers
Author:
Vahid DabbaghianAbdoly
Journal:
Math. Comp. 76 (2007), 16611668
MSC (2000):
Primary 20C40; Secondary 20C15
Published electronically:
January 25, 2007
MathSciNet review:
2299793
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Let be a finite group and an irreducible character of . A simple method for constructing a representation affording can be used whenever has a subgroup such that has a linear constituent with multiplicity 1. In this paper we show that (with a few exceptions) if is a simple group or a covering group of a simple group and is an irreducible character of of degree between 32 and 100, then such a subgroup exists.
 1.
J.
H. Conway, R.
T. Curtis, S.
P. Norton, R.
A. Parker, and R.
A. Wilson, Atlas of finite groups, Oxford University Press,
Eynsham, 1985. Maximal subgroups and ordinary characters for simple groups;
With computational assistance from J. G. Thackray. MR 827219
(88g:20025)
 2.
ATLAS of Finite Group Representations, School of Mathematics and Statistics, The University of Birmingham, Version 2, (http://web.mat.bham.ac.uk/atlas/v2.0/).
 3.
Vahid
DabbaghianAbdoly, Constructing representations of finite simple
groups and covers, Canad. J. Math. 58 (2006),
no. 1, 23–38. MR 2195590
(2007d:20023), http://dx.doi.org/10.4153/CJM20060023
 4.
V. DabbaghianAbdoly, An algorithm to construct representations of finite groups, Ph.D. thesis, School of Mathematics, Carleton University, 2003.
 5.
V. DabbaghianAbdoly, RPSEN  A Package for Constructing Representations of Finite Groups, GAP Package, 2004, (
http://www.gapsystem.org/Packages/repsn.html ).
 6.
John
D. Dixon, Constructing representations of finite groups,
Groups and computation (New Brunswick, NJ, 1991) DIMACS Ser. Discrete
Math. Theoret. Comput. Sci., vol. 11, Amer. Math. Soc., Providence,
RI, 1993, pp. 105–112. MR 1235797
(94h:20011)
 7.
The GAP Group, GAPGroups, Algorithms, and Programming. Version 4.6 (2005), (
http://www.gapsystem.org ).
 8.
R.
Gow, Schur indices of some groups of Lie type, J. Algebra
42 (1976), no. 1, 102–120. MR 0466330
(57 #6210)
 9.
Erhan
Güzel, Primitive idempotents of the group algebra
𝐶𝑆𝐿(3,𝑞), Math. Scand.
70 (1992), no. 2, 177–185. MR 1189972
(93k:20027)
 10.
G.
J. Janusz, Primitive idempotents in group
algebras, Proc. Amer. Math. Soc. 17 (1966), 520–523. MR 0194523
(33 #2733), http://dx.doi.org/10.1090/S00029939196601945230
 11.
Daniel
Gorenstein, Richard
Lyons, and Ronald
Solomon, The classification of the finite simple groups. Number 3.
Part I. Chapter A, Mathematical Surveys and Monographs, vol. 40,
American Mathematical Society, Providence, RI, 1998. Almost simple
𝐾groups. MR 1490581
(98j:20011)
 12.
I.
Martin Isaacs, Character theory of finite groups, Dover
Publications, Inc., New York, 1994. Corrected reprint of the 1976 original
[Academic Press, New York; MR0460423 (57 #417)]. MR
1280461
 13.
Gregory
Karpilovsky, The Schur multiplier, London Mathematical Society
Monographs. New Series, vol. 2, The Clarendon Press, Oxford University
Press, New York, 1987. MR 1200015
(93j:20002)
 14.
Zyozyu
Ohmori, On a Zelevinsky theorem and the Schur indices of the finite
unitary groups, J. Math. Sci. Univ. Tokyo 4 (1997),
no. 2, 417–433. MR 1466354
(98i:20045)
 15.
Neşe
Yelkenkaya, Primitive idempotents of the group algebra
𝐶𝑆𝐿(2,𝑞), İstanbul Üniv.
Fen Fak. Mat. Derg. 55/56 (1996/97), 99–109 (2000).
MR
1767540 (2001f:16051)
 16.
Andrey
V. Zelevinsky, Representations of finite classical groups,
Lecture Notes in Mathematics, vol. 869, SpringerVerlag, BerlinNew
York, 1981. A Hopf algebra approach. MR 643482
(83k:20017)
 1.
 J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker and R.A. Wilson, Atlas of Finite Groups. Maximal Subgroups and Ordinary Characters for Simple Groups, Claredon Press, Oxford, 1985. MR 827219 (88g:20025)
 2.
 ATLAS of Finite Group Representations, School of Mathematics and Statistics, The University of Birmingham, Version 2, (http://web.mat.bham.ac.uk/atlas/v2.0/).
 3.
 V. DabbaghianAbdoly, Constructing representations of finite simple groups and covers, Canad. J. Math., 58 (2006), 2338. MR 2195590
 4.
 V. DabbaghianAbdoly, An algorithm to construct representations of finite groups, Ph.D. thesis, School of Mathematics, Carleton University, 2003.
 5.
 V. DabbaghianAbdoly, RPSEN  A Package for Constructing Representations of Finite Groups, GAP Package, 2004, (
http://www.gapsystem.org/Packages/repsn.html ).
 6.
 J.D. Dixon, Constructing representations of finite groups, DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 11, Amer. Math. Soc., Providence, RI (1993), 105112. MR 1235797 (94h:20011)
 7.
 The GAP Group, GAPGroups, Algorithms, and Programming. Version 4.6 (2005), (
http://www.gapsystem.org ).
 8.
 R. Gow, Schur indices of some groups of Lie type, J. Algebra, 42 (1976), 102120. MR 0466330 (57:6210)
 9.
 E. Güzel, Primitive idempotents of the group algebra , Math. Scand., 70 (1992), no. 2, 177185. MR 1189972 (93k:20027)
 10.
 G.J. Janusz, Primitive idempotents in group algebras, Proc. Amer. Math. Soc., 17 (1966), 520523. MR 0194523 (33:2733)
 11.
 D. Gorenstein, R. Lyons and R. Solomon, The Classification of the Finite Simple Groups: Almost Simple groups, Number 3., Part I., Amer. Math. Soc., Providence, RI, 1998. MR 1490581 (98j:20011)
 12.
 I.M. Isaacs, Character Theory of Finite Groups, Dover, New York, 1994. MR 1280461
 13.
 G. Karpilovsky, The Schur Multiplier, London Math. Soc. Monographs, Oxford Univ., New York, 1987. MR 1200015 (93j:20002)
 14.
 Z. Ohmori, On a Zelevinsky theorem and the Schur indices of the finite unitary groups, J. Math. Sci. Univ. Tokyo, 4 (1997), 417433. MR 1466354 (98i:20045)
 15.
 N. Yelkenkaya, Primitive idempotents of the group algebra , Istanbul Univ. Fen Fak. Mat. Derg., 55/56 (1996/97), 99109. MR 1767540 (2001f:16051)
 16.
 A.V. Zelevinsky, Representations of Finite Classical Groups, Lecture Notes in Mathematics 869, Springer, New York, 1981. MR 643482 (83k:20017)
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC (2000):
20C40,
20C15
Retrieve articles in all journals
with MSC (2000):
20C40,
20C15
Additional Information
Vahid DabbaghianAbdoly
Affiliation:
The Centre for Experimental and Constructive Mathematics (CECM), Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
Email:
vdabbagh@cecm.sfu.ca
DOI:
http://dx.doi.org/10.1090/S0025571807019692
PII:
S 00255718(07)019692
Keywords:
Simple group,
central cover,
irreducible representation
Received by editor(s):
November 27, 2005
Received by editor(s) in revised form:
July 6, 2006
Published electronically:
January 25, 2007
Additional Notes:
This work was supported by the MITACS NCE and NSERC of Canada
Article copyright:
© Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.
