Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

On generalized averaged Gaussian formulas


Author: Miodrag M. Spalevic
Journal: Math. Comp. 76 (2007), 1483-1492
MSC (2000): Primary 65D30, 65D32; Secondary 33A65.
DOI: https://doi.org/10.1090/S0025-5718-07-01975-8
Published electronically: March 8, 2007
Erratum: Math. Comp. 47 (1986), 767.
MathSciNet review: 2299784
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We present a simple numerical method for constructing the optimal (generalized) averaged Gaussian quadrature formulas which are the optimal stratified extensions of Gauss quadrature formulas. These extensions exist in many cases in which real positive Kronrod formulas do not exist. For the Jacobi weight functions $ w(x)\equiv w^{(\alpha,\beta)}(x)=(1-x)^\alpha(1+x)^\beta$ ( $ \alpha,\beta>-1$) we give a necessary and sufficient condition on the parameters $ \alpha$ and $ \beta$ such that the optimal averaged Gaussian quadrature formulas are internal.


References [Enhancements On Off] (What's this?)

  • 1. M. Abramowitz and I. A. Stegun (eds), Handbook of mathematical functions, National Bureau of Standards, Washington, D.C., 1964. MR 0167642 (29:4914)
  • 2. D. Calvetti, G. H. Golub, W. B. Gragg, and L. Reichel, Computation of Gauss-Kronrod rules, Math. Comp. 69 (2000), 1035-1052. MR 1677474 (2000j:65035)
  • 3. D. Calvetti and L. Reichel, Symmetric Gauss-Lobatto and modified anti-Gauss rules, BIT 43 (2003), 541-554. MR 2026714 (2004k:65040)
  • 4. S. Ehrich, On stratified extensions of Gauss-Laguerre and Gaus-Hermite quadrature formulas, J. Comput. Appl. Math. 140 (2002), 291-299. MR 1934445 (2003g:65027)
  • 5. W. Gautschi, On generating orthogonal polynomials, SIAM J. Scient. Statist. Comput. 3 (1982), 289-317. MR 667829 (84e:65022)
  • 6. W. Gautschi, Orthogonal polynomials: computation and approximation, Numerical Mathematics and Scientific Computation, Oxford University Press, Oxford, 2004. MR 2061539 (2005e:42001)
  • 7. W. Gautschi, A historical note on Gauss-Kronrod quadrature, Numer. Math. 100 (2005), 483-484. MR 2195449
  • 8. G. H. Golub and J. H. Welsch, Calculation of Gauss quadrature rules, Math. Comp. 23 (1969), 221-230. MR 0245201 (39:6513)
  • 9. D. K. Kahaner and G. Monegato, Nonexistence of extended Gauss-Laguerre and Gauss-Hermite quadrature rules with positive weights, Z. Angew. Math. Phys. 29 (1978), 983-986. MR 523866 (80d:65034)
  • 10. D. P. Laurie, Stratified sequences of nested quadrature formulas, Quaestiones Math. 15 (1992), 365-384. MR 1192847 (93i:65039)
  • 11. D. P. Laurie, Anti-Gaussian quadrature formulas, Math. Comp. 65 (1996), 739-747. MR 1333318 (96m:65026)
  • 12. D. P. Laurie, Calculation of Gauss-Kronrod quadrature rules, Math. Comp. 66 (1997), 1133-1145. MR 1422788 (98m:65030)
  • 13. G. Monegato, An overview of the computational aspects of Kronrod quadrature rules, Numer. Algorithms 26 (2001), 173-196. MR 1829797 (2002a:65051)
  • 14. T. N. L. Patterson, Stratified nested and related quadrature rules, J. Comput. Appl. Math. 112 (1999), 243-251. MR 1728463
  • 15. F. Peherstorfer, Characterization of positive quadrature formulas, SIAM J. Math. Anal. 12 (1981), 935-942. MR 635246 (82m:65021)
  • 16. F. Peherstorfer, Characterization of quadrature formulas II, SIAM J. Math. Anal. 15 (1984), 1021-1030. MR 755862 (86a:65025)
  • 17. F. Peherstorfer, On positive quadrature formulas, ISNM, 112, Birkhäuser, Basel, 1993, pp. 297-313. MR 1248412 (94k:65035)
  • 18. F. Peherstorfer and K. Petras, Ultraspherical Gauss-Kronrod quadrature is not possible for $ \lambda>3$, SIAM J. Numer. Anal. 37 (2000), 927-948. MR 1749243 (2001g:33010)
  • 19. F. Peherstorfer and K. Petras, Stieltjes polynomials and Gauss-Kronrod quadrature for Jacobi weight functions, Numer. Math. 95 (2003), 689-706. MR 2013124 (2004j:33010)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 65D30, 65D32, 33A65.

Retrieve articles in all journals with MSC (2000): 65D30, 65D32, 33A65.


Additional Information

Miodrag M. Spalevic
Affiliation: Department of Mathematics and Informatics, University of Kragujevac, Faculty of Science, P.O. Box 60, 34000 Kragujevac, Serbia
Email: spale@kg.ac.yu

DOI: https://doi.org/10.1090/S0025-5718-07-01975-8
Keywords: Averaged and anti-Gaussian quadrature formula, optimal stratified extension, three-term recurrence relation, positive quadrature formula, Gauss, Jacobi matrix, Kronrod
Received by editor(s): August 9, 2005
Received by editor(s) in revised form: May 4, 2006
Published electronically: March 8, 2007
Additional Notes: The author was supported in part by the Serbian Ministry of Science and Environmental Protection (Project #144005A: “Approximation of linear operators”).
Article copyright: © Copyright 2007 American Mathematical Society

American Mathematical Society