Mathematics of Computation

This journal is devoted to research articles of the highest quality in computational mathematics. Areas covered include numerical analysis, computational discrete mathematics, including number theory, algebra and combinatorics, and related fields such as stochastic numerical methods. Articles must be of significant computational interest and contain original and substantial mathematical analysis or development of computational methodology. Reviews of books in areas related to computational mathematics are also included.

Submission information. See Information for Authors at the end of this issue.

Publisher Item Identifier. The Publisher Item Identifier (PII) appears at the top of the first page of each article published in this journal. This alphanumeric string of characters uniquely identifies each article and can be used for future cataloging, searching, and electronic retrieval.

Postings to the AMS website. Articles are posted to the AMS website individually after proof is returned from authors and before appearing in an issue.

Subscription information. Mathematics of Computation is published quarterly. Beginning in January 1996 Mathematics of Computation is accessible from www.ams.org/journals/. Subscription prices for Volume 76 (2007) are as follows: for paper delivery, $486 list, $389 institutional member, $437 corporate member, $316 member of CBMS organizations; $292 individual member; for electronic delivery, $437 list, $350 institutional member, $393 corporate member, $284 member of CBMS organizations, $262 individual member. Upon request, subscribers to paper delivery of this journal are also entitled to receive electronic delivery. If ordering the paper version, add $18 for surface delivery outside the United States and India; $19 to India. Expedited delivery to destinations in North America is $27; elsewhere $56.

Back number information. For back issues see the www.ams.org/bookstore.

Subscriptions and orders should be addressed to the American Mathematical Society, P.O. Box 845904, Boston, MA 02284-5904 USA. All orders must be accompanied by payment. Other correspondence should be addressed to 201 Charles Street, Providence, RI 02904-2294 USA.

Copying and reprinting. Material in this journal may be reproduced by any means for educational and scientific purposes without fee or permission with the exception of reproduction by services that collect fees for delivery of documents and provided that the customary acknowledgment of the source is given. This consent does not extend to other kinds of copying for general distribution, for advertising or promotional purposes, or for resale. Requests for permission for commercial use of material should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, RI 02904-2294 USA. Requests can also be made by e-mail to reprint-permission@ams.org.

Excluded from these provisions is material in articles for which the author holds copyright. In such cases, requests for permission to use or reprint should be addressed directly to the author(s). (Copyright ownership is indicated in the notice in the lower right-hand corner of the first page of each article.)

Mathematics of Computation is published quarterly by the American Mathematical Society at 201 Charles Street, Providence, RI 02904-2294 USA. Periodicals postage is paid at Providence, Rhode Island. Postmaster: Send address changes to Mathematics of Computation, American Mathematical Society, 201 Charles Street, Providence, RI 02904-2294 USA.

© 2007 by the American Mathematical Society. All rights reserved.
This journal is indexed in Mathematical Reviews, Zentralblatt MATH, Science Citation Index®, Science Citation Index Expanded, ISI Alerting ServicesSM, CompuMath Citation Index®, and Current Contents®/Physical, Chemical & Earth Sciences. This journal is archived in Portico.
© The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.

10 9 8 7 6 5 4 3 2 1 12 11 10 09 08 07
Xiaobing Feng and Ohannes A. Karakashian, Fully discrete dynamic mesh discontinuous Galerkin methods for the Cahn-Hilliard equation of phase transition ... 1093

Erik Burman and Alexandre Ern, Continuous interior penalty hp-finite element methods for advection and advection-diffusion equations 1119

Michael Griebel, Karl Scherer, and Marc Alexander Schweitzer, Robust norm equivalencies for diffusion problems 1141

Christophe Berthon and Frédéric Coquel, Nonlinear projection methods for multi-entropies Navier–Stokes systems 1163

M. Amara, D. Capatina-Papaghiuc, and D. Trujillo, Stabilized finite element method for Navier–Stokes equations with physical boundary conditions ... 1195

Adimurthi, Siddhartha Mishra, and G. D. Veerappa Gowda, Convergence of Godunov type methods for a conservation law with a spatially varying discontinuous flux function 1219

Wolfgang Dahmen, Helmut Harbrecht, and Reinhold Schneider, Adaptive methods for boundary integral equations: Complexity and convergence estimates .. 1243

M. S. Min, S. M. Kaber, and W. S. Don, Fourier–Padé approximations and filtering for spectral simulations of an incompressible Boussinesq convection problem ... 1275

Boris N. Khoromskij, Structured data-sparse approximation to high order tensors arising from the deterministic Boltzmann equation 1291

V. Didenko and E. Venturino, Approximation methods for the Muskhelishvili equation on smooth curves 1317

J. A. C. Weideman and L. N. Trefethen, Parabolic and hyperbolic contours for computing the Bromwich integral 1341

Aicke Hinrichs and Erich Novak, Cubature formulas for symmetric measures in higher dimensions with few points 1357

Zbyněk Šír and Bert Jüttler, C^2 Hermite interpolation by Pythagorean Hodograph space curves ... 1373

C. Beltrán and L. M. Pardo, On the probability distribution of condition numbers of complete intersection varieties and the average radius of convergence of Newton’s method in the underdetermined case 1393

Habib Ammari, Roland Griesmaier, and Martin Hanke, Identification of small inhomogeneities: Asymptotic factorization 1425

Amparo Gil, Javier Segura, and Nico M. Temme, Numerically satisfactory solutions of hypergeometric recursions 1449

Richard Brent, Colin Percival, and Paul Zimmermann, Error bounds on complex floating-point multiplication 1469

Miodrag M. Spalević, On generalized averaged Gaussian formulas 1483

Arthur Baragar and Ronald van Luijk, K3 surfaces with Picard number three and canonical vector heights 1493

Thomas Ransford and Jérémie Rostand, Computation of capacity ... 1499
Jim Hoste and Patrick D. Shanahan, Computing boundary slopes of 2-bridge links ... 1521
Jean-Paul Cerri, Euclidean minima of totally real number fields: Algorithmic determination ... 1547
Yusuke Chishiki, Takeshi Goto, and Yasuo Ohno, On the largest prime divisor of an odd harmonic number 1577
John Voight, Quadratic forms that represent almost the same primes ... 1589
Neil Calkin, Jimena Davis, Kevin James, Elizabeth Perez, and Charles Swannack, Computing the integer partition function . 1619
Jean-Paul Allouche, Christiane Frougny, and Kevin G. Hare, On univoque Pisot numbers ... 1639
Vahid Dabbaghian-Abdoly, Constructing representations of higher degrees of finite simple groups and covers 1661
Björn Assmann and Bettina Eick, Testing polycyclicity of finitely generated rational matrix groups ... 1669
Michael Beck, Eric Pine, Wayne Tarrant, and Kim Yarbrough Jensen, New integer representations as the sum of three cubes 1683
Reviews and Descriptions of Tables and Books 1691
Zhilin Li and Kazufumi Ito 2, Pavel Solin 3, Hedy Attouch, Giuseppe Buttazzo, and Gérard Michaille 4, Victor Shoup 5
Editorial Information

Information on the backlog for this journal can be found on the AMS website starting from http://www.ams.org/mcom.

In an effort to make articles available as quickly as possible, articles are posted to the AMS website individually after proof is returned from authors and before appearing in an issue.

A Consent to Publish and Copyright Agreement is required before a paper will be published in this journal. After a paper is accepted for publication, the Providence office will send out a Consent to Publish and Copyright Agreement to all authors of the paper. By submitting a paper to this journal, authors certify that the results have not been submitted to nor are they under consideration for publication by another journal, conference proceedings, or similar publication.

Information for Authors

Initial submission. The AMS uses Centralized Manuscript Processing for initial submission. Authors should submit a PDF file using the Initial Manuscript Submission form found at www.ams.org/cgi-bin/peertrack/submission.pl, or send one copy of the manuscript to the following address: Centralized Manuscript Processing, MATHEMATICS OF COMPUTATION, 201 Charles Street, Providence, RI 02904-2294 USA. If a paper copy is being forwarded to the AMS, indicate that it is for Mathematics of Computation and include the name of the corresponding author and contact information, such as an email address or mailing address. The author may suggest an appropriate editor for his or her paper.

The first page must consist of a descriptive title, followed by an abstract that summarizes the article in language suitable for workers in the general field (algebra, analysis, etc.). The descriptive title should be short, but informative; useless or vague phrases such as “some remarks about” or “concerning” should be avoided. The abstract must be brief, reasonably self-contained, and not exceed 300 words. Included with the footnotes to the paper should be the 2000 Mathematics Subject Classification representing the primary and secondary subjects of the article. The classifications are accessible from www.ams.org/msc/. The list of classifications is also available in print starting with the 1999 annual index of Mathematical Reviews. The Mathematics Subject Classification footnote may be followed by a list of key words and phrases describing the subject matter of the article and taken from it. Journal abbreviations used in bibliographies are listed in the latest Mathematical Reviews annual index. The series abbreviations are also accessible from www.ams.org/publications/. To help in preparing and verifying references, the AMS offers MR Lookup, a Reference Tool for Linking, at www.ams.org/mrlookup/.

Electronically prepared manuscripts. For the final submission of accepted papers, the AMS encourages use of electronically prepared manuscripts, with a strong preference for \(\text{AMS-\LaTeX} \). To this end, the Society has prepared \(\text{AMS-\LaTeX} \) author packages for each AMS publication. Author packages include instructions for preparing electronic manuscripts, samples, and a style file that generates the particular design specifications of that publication series. Articles properly prepared using the \(\text{AMS-\LaTeX} \) style file and the \texttt{label} and \texttt{ref} commands automatically enable extensive intra-document linking to the bibliography and other elements of the article for searching electronically on the Web. Because linking must often be added manually to electronically prepared manuscripts in other forms of \texttt{\LaTeX}, using \(\text{AMS-\LaTeX} \) also reduces the amount of technical intervention once the files are received by the AMS. This results in fewer errors in processing and saves the author proofreading time. \(\text{AMS-\LaTeX} \) papers also move more efficiently through the production stream, helping to minimize publishing costs.

\(\text{AMS-\LaTeX} \) is the highly preferred format of \texttt{\LaTeX}, but author packages are also available in \(\text{AMS-\TeX} \). Those authors who make use of these style files from the beginning of the writing process will further reduce their own efforts. Manuscripts prepared electronically in \texttt{\LaTeX} or plain \texttt{\TeX} are normally not acceptable due to the high amount of technical time required to insure that the file will run properly through the AMS in-house production
system. \LaTeX{} users will find that \texttt{AMS-\LaTeX{}} is the same as \LaTeX{} with additional commands to simplify the typesetting of mathematics, and users of plain \TeX{} should have the foundation for learning \texttt{AMS-\LaTeX{}}.

Authors may retrieve an author package from the AMS website starting from \url{www.ams.org/tex/} or via FTP to \url{ftp.ams.org} (login as \texttt{anonymous}, enter username as password, and type `\texttt{cd pub/author-info}`). The \textit{AMS Author Handbook} and the \textit{Instruction Manual} are available in PDF format following the author packages link from \url{www.ams.org/tex/}. The author package can also be obtained free of charge by sending email to \texttt{tech-support@ams.org} (Internet) or from the Publication Division, American Mathematical Society, 201 Charles Street, Providence, RI 02904-2294 USA. When requesting an author package, please specify \texttt{AMS-\LaTeX{}} or \texttt{AMS-\TEX{}} and the publication in which your paper will appear. Please be sure to include your complete email address.

\textbf{After acceptance.} The final version of the electronic manuscript should be sent to the Providence office immediately after the paper has been accepted for publication. The author should also send the final version of the paper to the Managing Editor, who will forward a copy to the Providence office. Accepted electronically prepared manuscripts can be submitted via the web at \url{www.ams.org/submit-book-journal/}, sent via email to \texttt{pub-submit@ams.org} (Internet), or sent on diskette to the Electronic Prepress Department, American Mathematical Society, 201 Charles Street, Providence, RI 02904-2294 USA. When sending a manuscript electronically via email or diskette, please be sure to include a message indicating in which publication the paper has been accepted. No corrections will be accepted electronically. Authors must mark their changes on their proof copies and return them to the Providence office. Complete instructions on how to send files are included in the author package.

\textbf{Electronic graphics.} Comprehensive instructions on preparing graphics are available starting from \url{www.ams.org/jourhtml/authors.html}. A few of the major requirements are given here.

Submit files for graphics as EPS (Encapsulated PostScript) files. This includes graphics originated via a graphics application as well as scanned photographs or other computer-generated images. If this is not possible, TIFF files are acceptable as long as they can be opened in Adobe Photoshop or Illustrator. No matter what method was used to produce the graphic, it is necessary to provide a paper copy to the AMS.

Authors using graphics packages for the creation of electronic art should also avoid the use of any lines thinner than 0.5 points in width. Many graphics packages allow the user to specify a “hairline” for a very thin line. Hairlines often look acceptable when proofed on a typical laser printer. However, when produced on a high-resolution laser imagesetter, hairlines become nearly invisible and will be lost entirely in the final printing process.

Screens should be set to values between 15\% and 85\%. Screens which fall outside of this range are too light or too dark to print correctly. Variations of screens within a graphic should be no less than 10\%.

\textbf{AMS policy on making changes to articles after posting.} Articles are posted to the AMS website individually after proof is returned from authors and before appearing in an issue. To preserve the integrity of electronically published articles, once an article is individually posted to the AMS website but not yet in an issue, changes cannot be made in place in the paper. However, an “Added after posting” section may be added to the paper right before the References when there is a critical error in the content of the paper. The “Added after posting” section gives the author an opportunity to correct this type of critical error before the article is put into an issue for printing and before it is then reposted with the issue. The “Added after posting” section remains a permanent part of the paper. The AMS does not keep author-related information, such as affiliation, current address, and email address, up to date after a paper is initially posted.

Once the article is assigned to an issue, even if the issue has not yet been posted to the AMS website, corrections may be made to the paper by submitting a traditional errata
Secure manuscript tracking on the Web and via email. Authors can track their manuscripts through the AMS journal production process using the personal AMS ID and Article ID printed in the upper right-hand corner of the Consent to Publish form sent to each author who publishes in AMS journals. Access to the tracking system is available from www.ams.org/mstrack/ or via email sent to mstrack-query@ams.org. To access by email, on the subject line of the message simply enter the AMS ID and Article ID. To track more than one manuscript by email, choose one of the Article IDs and enter the AMS ID and the Article ID followed by the word all on the subject line. An explanation of each production step is provided on the web through links from the manuscript tracking screen. Questions can be sent to mcom-query@ams.org.

\TeX files available upon request. \TeX files are available upon request for authors by sending email to file-request@ams.org or by contacting the Electronic Prepress Department, American Mathematical Society, 201 Charles Street, Providence, RI 02904-2294 USA. The request should include the title of the paper, the name(s) of the author(s), the name of the publication in which the paper has or will appear, and the volume and issue numbers if known. The \TeX file will be sent to the author making the request after the article goes to the printer. If the requestor can receive Internet email, please include the email address to which the file should be sent. Otherwise please indicate a diskette format and postal address to which a disk should be mailed. Note: Because \TeX production at the AMS sometimes requires extra fonts and macros that are not yet publicly available, \TeX files cannot be guaranteed to run through the author’s version of \TeX without errors. The AMS regrets that it cannot provide support to eliminate such errors in the author’s \TeX environment.

Inquiries. Any inquiries concerning a paper that has been accepted for publication that cannot be answered via the manuscript tracking system mentioned above should be sent to mcom-query@ams.org or directly to the Electronic Prepress Department, American Mathematical Society, 201 Charles Street, Providence, RI 02904-2294 USA.

Editorial Committee

SUSANNE C. BRENNER, Center for Computation and Technology, Johnston Hall, Louisiana State University, Baton Rouge, LA 70803 USA; E-mail: brenner@math.lsu.edu

RONALD F. A. COOLS, Department of Computer Science, Katholieke Universiteit Leuven, Celestijnenlaan 200A, B-3001 Heverlee, Belgium; E-mail: ronald.cools@cs.kuleuven.ac.be

HARALD NIEDERREITER, Department of Mathematics, National University of Singapore, 2 Science Drive 2, Singapore 117543, Republic of Singapore; E-mail: nied@math.nus.edu.sg

CHI-WANG SHU, Chair. Applied Mathematics Division, Brown University, P.O. Box F, 182 George St., Providence, RI 02912-0001 USA; E-mail: mathcomp@dam.brown.edu

Board of Associate Editors

DAVID W. BOYD, Department of Mathematics, University of British Columbia, Vancouver, BC Canada V6T 1Z2; E-mail: boyd@math.ubc.ca

ZHIMING CHEN, Institute of Computational Mathematics, Chinese Academy of Sciences, P.O. Box 2719, Beijing 100080, China; E-mail: zmchen@lsec.cc.ac.cn

BERNARDO COCKBURN, School of Mathematics, University of Minnesota, 206 Church Street SE, Minneapolis, MN 55455; E-mail: cockburn@math.umn.edu

ARJEH M. COHEN, Faculteit Wiskunde en Informatica, TU Eindhoven, Postbus 513, 5600 MB Eindhoven, Netherlands; E-mail: amc@win.tue.nl

RICARDO G. DURAN, Department of Mathematics, University of Buenos Aires, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires, Argentina; E-mail: rduar@dm.uba.ar

IVAN P. GAVRILYUK, Berufskademie Thüringen, Am Wartenberg 2, D-99817 Eisenach, Germany; E-mail: ipg@ba-eisenach.de
VIVETTE GIRault, Laboratoire Jacques-Louis Lions, Boîte Courrier 187, Université de Pierre et Marie Curie, 4, place Jussieu, 75252 Paris Cedex 05, France; E-mail: girault@ann.jussieu.fr

ERNST HAIRER, Université de Genève, Section de Mathématiques, 2-4 Rue du Livre, CP 248, CH 1211 24 Genève, Switzerland; E-mail: ernst.hairer@math.unige.ch

DANIEL W. LOZIER, National Institute of Standards and Technology, 100 Bureau Drive, Mail Stop 8910, Gaithersburg, MD 20899-8910 USA; E-mail: dlozier@nist.gov

JOHN MCKAY, Department of Computer Science and Software Engineering, Concordia University, 1455 De Maisonneuve Blvd. West, Montreal, QC, H3G 1M8, Canada; E-mail: mckay@cse.concordia.ca

JEAN-FRANÇOIS MESTRE, UFR de Mathématiques, 2 place Jussieu, Université de Paris VII, Paris 75005, France.

MARIAN NEAMTU, 1326 Stevenson Center, Department of Mathematics, Vanderbilt University, Nashville, TN 37240; E-mail: neamtu@math.vanderbilt.edu

RICARDO H. NOCHETTO, Department of Mathematics, University of Maryland, Mathematics Building 084, College Park, MD 20742-0001 USA; E-mail: rhn@math.umd.edu

STANLEY OSHER, Department of Mathematics, University of California, P.O. Box 951555, Los Angeles, CA 90095-1555 USA; E-mail: sjo@math.ucla.edu

JOSEPH E. PASCIAK, Department of Mathematics, Texas A&M University, 507B Blocker Hall, MS 3368, College Station, TX 77843 USA; E-mail: pasciak@math.tamu.edu

LOTHAR REICHEL, Department of Mathematics & Computer Science, Kent State University, P.O. Box 5190, Kent, OH 44242-0001 USA; E-mail: reichel@math.kent.edu

RENATE SCHEIDL, Department of Mathematics and Statistics, MS 364, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada; E-mail: rscheidl@math.ucalgary.ca

JIE SHEN, Department of Mathematics, Purdue University, West Lafayette, IN 47907; E-mail: shen@math.purdue.edu

IGOR E. SHPARLINSKI, Department of Computing, Macquarie University, Sydney, New South Wales 2109, Australia; E-mail: igor@math.mq.edu.au

CHRISt SMYTH, School of Mathematics, The University of Edinburgh, James Clerk Maxwell Building, King’s Buildings, Mayfield Road, Edinburgh, EH9 3JZ, United Kingdom; E-mail: c.smyth@ed.ac.uk

MICHAEL E. STILLMAN, Department of Mathematics, Cornell University, 205 Malott Hall, Ithaca, NY 14853-4201 USA; E-mail: mike@math.cornell.edu

DANIEL B. SZYLD, Department of Mathematics, Temple University (038-16), 1805 N. Borad Street, Philadelphia, PA 19122-6094 USA; E-mail: szyl@temple.edu

DENIS TALAY, INRIA, 2004 Route des Lucioles, BP 93, 06902 Sophia Antipolis, Cedex, France; E-mail: talay@inria.fr

TAO TANG, Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong E-mail: ttang@hkbu.edu.hk

PAUL Y. TSENG, Department of Mathematics, University of Washington, Box 354350, Seattle, WA 98195-4350 USA; E-mail: tseng@math.washington.edu

JINCHAO XU, Department of Mathematics, Pennsylvania State University, McAllister Building, University Park, PA 16802-6401 USA; E-mail: xu@math.psu.edu
Richard Brent, Colin Percival, and Paul Zimmermann, Error bounds on complex floating-point multiplication .. 1469
Miodrag M. Spalević, On generalized averaged Gaussian formulas 1483
Arthur Baragar and Ronald van Luijk, K3 surfaces with Picard number three and canonical vector heights .. 1493
Thomas Ransford and Jérémie Rostand, Computation of capacity ... 1499
Jim Hoste and Patrick D. Shanahan, Computing boundary slopes of 2-bridge links ... 1521
Jean-Paul Cerri, Euclidean minima of totally real number fields: Algorithmic determination ... 1547
Yusuke Chishiki, Takeshi Goto, and Yasuo Ohno, On the largest prime divisor of an odd harmonic number .. 1577
John Voight, Quadratic forms that represent almost the same primes ... 1589
Neil Calkin, Jimena Davis, Kevin James, Elizabeth Perez, and Charles Swannack, Computing the integer partition function . 1619
Jean-Paul Allouche, Christiane Frougny, and Kevin G. Hare, On univoque Pisot numbers ... 1639
Vahid Dabbaghian-Abdoly, Constructing representations of higher degrees of finite simple groups and covers 1661
Björn Assmann and Bettina Eick, Testing polycyclicity of finitely generated rational matrix groups .. 1669
Michael Beck, Eric Pine, Wayne Tarrant, and Kim Yarbrough Jensen, New integer representations as the sum of three cubes 1683
Reviews and Descriptions of Tables and Books 1691
Zhilin Li and Kazufumi Ito 2, Pavel Solin 3, Hedy Attouch, Giuseppe Buttazzo, and Gérard Michaille 4, Victor Shoup 5
MATHEMATICS OF COMPUTATION

CONTENTS

Vol. 76, No. 259

July 2007

Xiaobing Feng and Ohannes A. Karakashian, Fully discrete dynamic mesh discontinuous Galerkin methods for the Cahn-Hilliard equation of phase transition ... 1093

Erik Burman and Alexandre Ern, Continuous interior penalty hp-finite element methods for advection and advection-diffusion equations 1119

Michael Griebel, Karl Scherer, and Marc Alexander Schweitzer, Robust norm equivalencies for diffusion problems 1141

Christophe Berthon and Frédéric Coquel, Nonlinear projection methods for multi-entropies Navier–Stokes systems 1163

M. Amara, D. Capatina-Papaghiuc, and D. Trujillo, Stabilized finite element method for Navier–Stokes equations with physical boundary conditions .. 1195

Adimurthi, Siddhartha Mishra, and G. D. Veerappa Gowda, Convergence of Godunov type methods for a conservation law with a spatially varying discontinuous flux function 1219

Wolfgang Dahmen, Helmut Harbrecht, and Reinhold Schneider, Adaptive methods for boundary integral equations: Complexity and convergence estimates .. 1243

M. S. Min, S. M. Kaber, and W. S. Don, Fourier–Padé approximations and filtering for spectral simulations of an incompressible Boussinesq convection problem .. 1275

Boris N. Khoromskij, Structured data-sparse approximation to high order tensors arising from the deterministic Boltzmann equation 1291

V. Didenko and E. Venturino, Approximation methods for the Muskhelishvili equation on smooth curves 1317

J. A. C. Weideman and L. N. Trefethen, Parabolic and hyperbolic contours for computing the Bromwich integral 1341

Aicke Hinrichs and Erich Novak, Cubature formulas for symmetric measures in higher dimensions with few points 1357

Zbyněk Šíř and Bert Jüttler, C^2 Hermite interpolation by Pythagorean Hodograph space curves .. 1373

C. Beltrán and L. M. Pardo, On the probability distribution of condition numbers of complete intersection varieties and the average radius of convergence of Newton’s method in the underdetermined case 1393

Habib Ammari, Roland Griesmaier, and Martin Hanke, Identification of small inhomogeneities: Asymptotic factorization 1425

Amparo Gil, Javier Segura, and Nico M. Temme, Numerically satisfactory solutions of hypergeometric recursions 1449

(Continued on inside back cover)