TWO KINDS OF STRONG PSEUDOPRIMES UP TO 10^{36}

ZHENXIANG ZHANG

Dedicated to the memory of Kencheng Zeng (1927–2004)

Abstract. Let $n > 1$ be an odd composite integer. Write $n - 1 = 2^s d$ with d odd. If either $b^d \equiv 1 \pmod{n}$ or $b^{2^r d} \equiv -1 \pmod{n}$ for some $r = 0, 1, \ldots, s - 1$, then we say that n is a strong pseudoprime to base b, or spsp(b) for short. Define ψ_t to be the smallest strong pseudoprime to all the first t prime bases. If we know the exact value of ψ_t, we will have, for integers $n < \psi_t$, a deterministic efficient primality testing algorithm which is easy to implement. Thanks to Pomerance et al. and Jaeschke, the ψ_t are known for $1 \leq t \leq 8$. Conjectured values of $\psi_9, \ldots, \psi_{12}$ were given by us in our previous papers (Math. Comp. 72 (2003), 2085–2097; 74 (2005), 1009–1024).

The main purpose of this paper is to give exact values of ψ'_t for $13 \leq t \leq 19$; to give a lower bound of ψ'_{20}: $\psi'_{20} > 10^{36}$; and to give reasons and numerical evidence of K_2- and C_3-spsp’s $< 10^{36}$ to support the following conjecture: $\psi_t = \psi'_t < \psi''_t$ for any $t \geq 12$, where ψ'_t (resp. ψ''_t) is the smallest K_2- (resp. C_3-) strong pseudoprime to all the first t prime bases. For this purpose we describe procedures for computing and enumerating the two kinds of spsp’s $< 10^{36}$ to the first 9 prime bases. The entire calculation took about 4000 hours on a PC Pentium IV/1.8GHz. (Recall that a K_2-spsp is an spsp of the form: $n = pq$ with p, q primes and $q - 1 = 2(p - 1)$; and that a C_3-spsp is an spsp and a Carmichael number of the form: $n = q_1q_2q_3$ with each prime factor $q_i \equiv 3 \pmod{4}$.)

1. Introduction

Let $n > 1$ be an odd integer. Write $n - 1 = 2^s d$ with d odd. We say that n passes the Miller (strong probable prime) test [5] to base b, or that n is an sprp(b) for short, if

$$(1.1) \quad \text{either } b^d \equiv 1 \pmod{n} \text{ or } b^{2^r d} \equiv -1 \pmod{n} \text{ for some } r = 0, 1, \ldots, s - 1.$$

(The original test of Miller [5] was somewhat more complicated and was a deterministic, ERH-based test; see [1, Section 3.4].) If n is composite and (1.1) holds, then we say that n is a strong pseudoprime to base b, or spsp(b) for short. An spsp(b_1, \ldots, b_t) is an spsp to all the t bases. Define

$$(1.2) \quad SB(n) = \# \{ b \in \mathbb{Z} : 1 \leq b \leq n - 1, n \text{ is an spsp(b)} \} \quad \text{and} \quad PR(n) = \frac{SB(n)}{\varphi(n)}.$$
where \(\varphi \) is Euler’s function. Monier [6] and Rabin [8] proved that if \(n \) is an odd composite positive integer, then \(SB(n) \leq (n-1)/4 \). In fact, as pointed out by Damgård, Landrock and Pomerance [2], if \(n \neq 9 \) is odd and composite, then \(SB(n) \leq \varphi(n)/4 \), i.e., \(P_2(n) \leq 1/4 \). These facts lead to the Rabin-Miller test: given a positive integer \(n \), pick \(k \) different positive integers less than \(n \) and perform the Miller test on \(n \) for each of these bases; if \(n \) is composite, the probability that \(n \) passes all \(k \) tests is less than \(1/4^k \).

Define \(\psi_t \) to be the smallest strong pseudoprime to all the first \(t \) prime bases. If \(n < \psi_t \), then only \(t \) Miller tests are needed to find out whether \(n \) is prime or not. This means that if we know the exact value of \(\psi_t \), then for integers \(n < \psi_t \) we will have a deterministic primality testing algorithm which is not only easier to implement but also faster than existing deterministic primality testing algorithms. From Pomerance et al. [7] and Jaeschke [4] we know the exact values of \(\psi \) for \(1 \leq t \leq 8 \) and upper bounds for \(\psi_9, \psi_{10} \) and \(\psi_{11} \):

\[
\psi_9 \leq 41234 \; 31613 \; 57056 \; 89041 \; (20 \text{ digits})
\]

\[
= 4540612081 \cdot 9081224161,
\]

\[
\psi_{10} \leq 155 \; 33605 \; 66073 \; 14320 \; 55410 \; 02401 \; (28 \text{ digits})
\]

\[
= 22754930352733 \cdot 68264791058197,
\]

\[
\psi_{11} \leq 5689 \; 71935 \; 26942 \; 02437 \; 03269 \; 72321 \; (29 \text{ digits})
\]

\[
= 137716125329053 \cdot 413148375987157.
\]

Jaeschke [4] tabulated all strong pseudoprimes \(< 10^{12} \) to the bases 2, 3, and 5. There are in total 101 of them. Among these 101 numbers there are 95 numbers \(n \) having the form

\[
(1.3) \quad n = pq \quad \text{with } p, q \text{ odd primes and } q - 1 = k(p - 1),
\]

with \(k \in \{2, 3, 4, 5, 6, 7, 13, 4/3, 5/2\} \); the other six numbers are Carmichael numbers with three prime factors in the sense that:

\[
(1.4) \quad n = q_1q_2q_3 \quad \text{with } q_1 < q_2 < q_3 \text{ odd primes and each } q_i - 1 \mid n - 1.
\]

For short we call numbers (strong pseudoprimes) having the form (1.3) \(K_k \)-numbers (spsp’s), say, \(K_2 \)-spsp’s if \(k = 2 \).

In [9], we first followed our previous work [9] to find all \(K_2 \)-, \(K_3 \)-, \(K_4 \)-strong pseudoprimes \(< 10^{24} \) to the first nine or ten prime bases. As a result the upper bounds for \(\psi_{10} \) and \(\psi_{11} \) were considerably lowered:

\[
\psi_{10} \leq N_{10} = 19 \; 55097 \; 53037 \; 45565 \; 03981 \; (22 \text{ digits})
\]

\[
= 31265776261 \cdot 62531552521,
\]

\[
\psi_{11} \leq N_{11} = 73 \; 95010 \; 24079 \; 41207 \; 09381 \; (22 \text{ digits})
\]

\[
= 60807114061 \cdot 121614228121,
\]

and a 24-digit upper bound for \(\psi_{12} \) was obtained:

\[
\psi_{12} \leq N_{12} = 3186 \; 65857 \; 83403 \; 11511 \; 67461 \; (24 \text{ digits})
\]

\[
= 399165290221 \cdot 798330580441.
\]

In [11], we first followed our previous work [9] to find all \(K_4/3 \)-, \(K_5/2 \)-, \(K_3/2 \)-, \(K_6 \)-spsp’s \(< 10^{24} \) to the first several prime bases. No spsp’s of such forms to the first 8 prime bases are found. Note that the three bounds \(N_{10}, N_{11} \) and \(N_{12} \) are all
STRONG PSEUDOPRIMES TO 10^{36}

K2-spsp’s with $P_R(n) = 3/16$. These facts give us a hint that to lower these upper bounds, we should find those numbers n with $P_R(n)$ equal to or close to $1/4$.

For short, we call a Carmichael number $n = q_1q_2q_3$ with each prime factor $q_i \equiv 3 \mod 4$ a K2-number. If n is a C3-number and an spsp(b_1, b_2, \ldots, b_t), we call n a C3-spsp(b_1, b_2, \ldots, b_t). It is easy to prove that (see [11 §5])

$$P_R(n) = 1/4 \iff \text{either } n = pq \text{ is a K2-number with } p \equiv 3 \mod 4 \text{ or } n \text{ is a C3-number; }$$

and that

$$\text{if } n \text{ is an spsp(2), then } P_R(n) = 1/4 \iff n \text{ is a C3-number.}$$

We [11] then focused our attention to develop a method for finding all C3-spsp($2, 3, 5, 7, 11$)'s $< 10^{20}$. As a result the upper bounds for ψ_9, ψ_{10} and ψ_{11} are lowered from 20- and 22-decimal-digit numbers to a 19-decimal-digit number:

$$\psi_9 \leq \psi_{10} \leq \psi_{11} \leq Q_{11} = 3825 12305 65464 13051 \text{ (19 digits)}$$

$$= 149491 \cdot 747451 \cdot 34233211.$$

We [11] at last gave reasons to support the following Conjecture 1 (see also [3, Problem A12]).

Conjecture 1. We have

$$\psi_9 = \psi_{10} = \psi_{11} = 3825 12305 65464 13051 \text{ (19 digits)}.$$

Let $q_1 < q_2 < q_3$ be odd primes and $N = q_1q_2q_3$. Put

$$d = \gcd(q_1 - 1, q_2 - 1, q_3 - 1) \text{ and } h_i = \frac{2q_i - 1}{d}, \text{ } i = 1, 2, 3.$$

Then we call d the kernel, the triple (h_1, h_2, h_3) the signature, and $H = h_1h_2h_3$ the height of N, respectively. In [10, Section 2], we described a procedure for finding C3-spsp(2)'s, to a given limit, with heights bounded. There are in total 21978 C3-spsp(2)'s $< 10^{24}$ with heights $< 10^9$, only three of which are spsp's to the first 11 prime bases up to 31. No C3-spsp's $< 10^{24}$ to the first 12 prime bases with heights $< 10^9$ were found.

Denote by ψ'_t (resp. ψ''_t) the smallest K2- (resp. C3-) spsp to all the first t prime bases. In [10, §5], we gave reasons to support the following Conjecture 2.

Conjecture 2. We have

$$\psi_9 = \psi_{10} = \psi_{11} = 3825 12305 65464 13051 \text{ (19 digits)}.$$

Let $q_1 < q_2 < q_3$ be odd primes and $N = q_1q_2q_3$. Put

$$d = \gcd(q_1 - 1, q_2 - 1, q_3 - 1) \text{ and } h_i = \frac{2q_i - 1}{d}, \text{ } i = 1, 2, 3.$$

Then we call d the kernel, the triple (h_1, h_2, h_3) the signature, and $H = h_1h_2h_3$ the height of N, respectively. In [10, Section 2], we described a procedure for finding C3-spsp(2)'s, to a given limit, with heights bounded. There are in total 21978 C3-spsp(2)'s $< 10^{24}$ with heights $< 10^9$, only three of which are spsp's to the first 11 prime bases up to 31. No C3-spsp's $< 10^{24}$ to the first 12 prime bases with heights $< 10^9$ were found.

Denote by ψ'_t (resp. ψ''_t) the smallest K2- (resp. C3-) spsp to all the first t prime bases. In [10, §5], we gave reasons to support the following Conjecture 2.

Conjecture 2. We have

(1.8) $$\psi_{12} = \psi'_{12} < 10^{24} < \psi''_{12}.$$

where

$$\psi_{12}' = N_{12} = 3186 65857 83403 11511 67461 \text{ (24 digits)}$$

$$= 399165290221 \cdot 798330580441.$$

was found in [9] (see (1.5)).

The main purpose of this paper is to give reasons and numerical evidence of K2- and C3- strong pseudoprimes $< 10^{36}$ to support the following Conjecture 3, where the exact values of ψ'_t for $13 \leq t \leq 19$ and an upper bound of ψ''_{20} are given in the following Proposition 1.1.

Conjecture 3. We have

$$\psi_t = \psi'_t < \psi''_t$$

for any $t \geq 12$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Remark 1.1. Conjecture 3 covers Conjecture 2, which is the case $t = 12$.

Proposition 1.1. We have

\[
\begin{align*}
\psi_1' &= 33170 44064 67988 73859 61981 \text{ (25 digits)} \\
&= 1287836182261 \cdot 2575672364521;
\end{align*}
\]

\[
\begin{align*}
\psi_2' &= 600 30942 89670 10580 03125 96501 \text{ (28 digits)} \\
&= 54786377365501 \cdot 10957275473101;
\end{align*}
\]

\[
\begin{align*}
\psi_3' &= 5927 63610 75595 57326 34463 30101 \text{ (29 digits)} \\
&= 172157429516701 \cdot 344314859033401;
\end{align*}
\]

\[
\begin{align*}
\psi_4' &= \psi_5' = 56413 29280 21909 22101 40875 01701 \text{ (30 digits)} \\
&= 531099297693901 \cdot 1062198595387801;
\end{align*}
\]

\[
\begin{align*}
\psi_6' &= \psi_7' = 1543 26786 44434 20616 87767 76407 51301 \text{ (34 digits)} \\
&= 27778299663977101 \cdot 55556599327954201;
\end{align*}
\]

\[
\psi_8' > 10^{36}.
\]

In Section 2 we describe a procedure for finding all K_2-spsp’s $< L = 10^{36}$ to the first $t = 9$ prime bases. There are in total 90002828 numbers, 100920 of which are spsp’s to the first 13 prime bases. We tabulate 24 of them, which are spsp’s to the first 18 prime bases up to 61, 4 of which are spsp’s to the first 19 prime bases up to 67. No K_2-spsp’s $< 10^{36}$ to the first 20 prime bases are found. Thus the 100920 numbers prove Proposition 1.1. In Section 3 we describe procedures for finding all C_3-spsp’s $< 10^{36}$, to the first $t = 9$ prime bases, with heights $< 10^{12}$. There are in total 43278 numbers. We tabulate 20 of them, which are spsp’s to the first 15 prime bases up to 47, 2 numbers are spsp’s to the first 16 prime bases up to 53. No C_3-spsp’s $< 10^{36}$ to the first 17 prime bases with heights $< 10^{12}$ are found. Moreover, no C_3-spsp’s $< \psi_t'$ to the first t prime bases with heights $< 10^{12}$ are found for $t \geq 12$. In Section 4 we reasonably predict that $\psi_t' < \psi_t''$ for any $t \geq 12$. Since K_2-spsp’s and C_3-spsp’s have $\text{PR}(n)$ close to or equal to 1/4 (the upper bound of the probability of error for the Rabin-Miller test), Conjecture 3 would be most likely correct. The entire calculation for computing the two kinds of spsp’s $< 10^{36}$ took about 4000 hours on a PC Pentium IV/1.8GHz.

2. K2-strong pseudoprimes up to 10^{36}

Let π be a primary irreducible of the ring $\mathbb{Z}[i]$ of Gaussian integers such that

$q = \pi \equiv 1 \mod 4$ and $p = (q + 1)/2$ are two primes determined by π. Denote by

$\left(\frac{b}{\pi} \right)_4$ the biquadratic residue character symbol of b modulo π. Put $p_\alpha = (\alpha \bar{\alpha} + 1)/2$ for $\alpha \in \mathbb{Z}[i]$. Let

$$
R_2 = \left\{ \text{primary } \alpha = x + yi : 0 \leq x, y < 8, \frac{x^2 + y^2}{8} = (-1)^{\frac{x^2 - 1}{8}} \right\} = \{1, 5 + 4i\}.
$$

For a prime $b \equiv 3 \mod 4$, let

$$
R_b = \left\{ \alpha = x + yi : 0 \leq x, y < 4b, \alpha \equiv 1 \mod 4, \left(\frac{\alpha}{b} \right)_4 = \left(\frac{p_\alpha}{b} \right)_4 \right\};
$$

and for a prime $b \equiv 1 \mod 4$, let

$$
R_b = \left\{ \alpha = x + yi : 0 \leq x, y < 4b, \alpha \equiv 1 \mod 4, \left(\frac{\alpha \bar{\alpha} - 1}{\beta} \right)_4 = \left(\frac{p_\alpha}{b} \right)_4 \right\},
$$

\[4\text{ digits}]

\[29\text{ digits}]

\[1287836182261 \cdot 2575672364521;\]

\[54786377365501 \cdot 10957275473101;\]

\[172157429516701 \cdot 344314859033401;\]

\[531099297693901 \cdot 1062198595387801;\]

\[27778299663977101 \cdot 55556599327954201;\]

\[2 \geq 12.\]

\[10^{36}.
\]

\[
\begin{align*}
\psi_1' &= 33170 44064 67988 73859 61981 \text{ (25 digits)} \\
&= 1287836182261 \cdot 2575672364521;
\end{align*}
\]

\[
\begin{align*}
\psi_2' &= 600 30942 89670 10580 03125 96501 \text{ (28 digits)} \\
&= 54786377365501 \cdot 10957275473101;
\end{align*}
\]

\[
\begin{align*}
\psi_3' &= 5927 63610 75595 57326 34463 30101 \text{ (29 digits)} \\
&= 172157429516701 \cdot 344314859033401;
\end{align*}
\]

\[
\begin{align*}
\psi_4' &= \psi_5' = 56413 29280 21909 22101 40875 01701 \text{ (30 digits)} \\
&= 531099297693901 \cdot 1062198595387801;
\end{align*}
\]

\[
\begin{align*}
\psi_6' &= \psi_7' = 1543 26786 44434 20616 87767 76407 51301 \text{ (34 digits)} \\
&= 27778299663977101 \cdot 55556599327954201;
\end{align*}
\]

\[
\psi_8' > 10^{36}.
\]
where \((\frac{a}{n}) \) is the Jacobi symbol. Let \(M^{(t)} = 4 \prod_{j=1}^{t} b_j \), where \(b_j \) is the \(j \)th prime. Applying the Chinese Remainder Theorem, it is easy to compute the set

\[
R^{(t)} = \{ x + yi : 0 \leq x, y < M^{(t)}, x + yi \pmod{4b} \in R_b \text{ for all the first } t \text{ prime bases } b \}.
\]

In [9], we described a procedure to compute all \(K_2 \)-numbers \(n = pq \), below a given limit \(L \) (say \(10^{24} \)), which are strong pseudoprimes to the first \(t \geq 6 \) prime bases.

The procedure is based on the following proposition.

Proposition 2.1 ([9] Proposition 3.2). If \(n = pq \) is an spsp to the first \(t \) prime bases, then there exists \(\alpha \in R^{(t)} \) such that \(\pi \equiv \alpha \mod M^{(t)} \).

Since \(M^{(6)} = 4 \cdot 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 = 120120 \) and \(\#R^{(6)} = 2 \cdot 2 \cdot 12 \cdot 30 \cdot 30 = 86400 \) are of suitable size for programming on a PC486 with Turbo Pascal 6.0, we successfully found all \(K_2 \)-strong pseudoprimes \(< 10^{24} \) to the first six prime bases.

Now our objective is to compute all \(K_2 \)-numbers \(n = pq < 10^{36} \) on a PC Pentium IV/1.8 GHz with Delphi 6.0, which are strong pseudoprimes to the first 9 prime bases. To speed things up, we should use a larger database \(R^{(t)} \). However, since

\[
\#R^{(9)} = \#R^{(6)} \cdot 56 \cdot 90 \cdot 132 = 4838400 \cdot 11880 = 57480192000,
\]

the set \(R^{(9)} \) is too large to fit in either memory or in a disk file. Considering the storage requirements and the efficiency of the algorithm, we pre-compute the set \(R^{(7)} \) and the set

\[
S = \{ x + yi : 0 \leq x, y < 4 \cdot 19 \cdot 23, x + yi \pmod{4b} \in R_b \text{ for } b = 19 \text{ and } 23 \}
\]

with

\[
M^{(7)} = M^{(6)} \cdot 17 = 2042040, \quad \#R^{(7)} = \#R^{(6)} \cdot 56 = 4838400
\]

and

\[
\#S = 90 \cdot 132 = 11880.
\]

Now we are ready to describe a procedure to compute all \(K_2 \)-spsp’s \(< L = 10^{36} \), to the first \(t \geq 9 \) prime bases, with \(M^{(9)} = M^{(7)} \cdot 19 \cdot 23 = 892371480 \).

PROCEDURE 2.1. Finding \(K_2 \)-spsp to the first \(t \geq 9 \) prime bases;

BEGIN

For every \(x_1 + y_1 i \in R^{(7)} \) Do

begin Using the CRT, compute \(x \) and \(y \) such that

\[
0 \leq x, y < M^{(9)}, \quad x + yi \pmod{M^{(7)}} \in R^{(7)}
\]

and \(x + yi \pmod{4 \cdot 19 \cdot 23} \in S \);

For \(u \geq 0, v \geq 0, u + v \leq \frac{\sqrt{2M^{(9)}}}{M^{(7)}} + 1 \) Do

begin \(q \leftarrow (x + uM^{(9)})^2 + (y + vM^{(9)})^2; \quad p \leftarrow (q + 1)/2; \quad n \leftarrow p \cdot q \);

If \(n \) is an spsp to the first \(t \) prime bases Then output \(n, p \) and \(q \);

\(q \leftarrow (x - uM^{(9)})^2 + (y + vM^{(9)})^2; \quad p \leftarrow (q + 1)/2; \quad n \leftarrow p \cdot q \);

If \(n \) is an spsp to the first \(t \) prime bases Then output \(n, p \) and \(q \)

End

END.

The Delphi-Pascal program (with multi-precision package partially written in Assembly language) ran about 2400 hours on a PC Pentium IV/1.8GHz (in fact we
used 10 PCs with each running 10 days) to get all K2-spsp’s < 10^{36} to the first nine prime bases $2, 3, 5, 7, 11, 13, 17, 19$, and 23. There are in total 90002828 numbers, 100920 of which are spsp’s to the first 13 prime bases, 24 numbers are spsp’s to the first 18 prime bases up to 61 (listed in Table 1), 4 numbers are spsp’s to the first 19 prime bases up to 67. No K2-spsp’s < 10^{36} to the first 20 prime bases are found. Thus, the 100920 numbers prove Proposition 1.1.

Table 1. List of all K2-spsp’s $n = p(2p - 1) < 10^{36}$ to the first 18 prime bases

<table>
<thead>
<tr>
<th>$n = p(2p - 1)$</th>
<th>p</th>
<th>spsp-base</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>67</td>
</tr>
<tr>
<td>1543 26786</td>
<td>44344 20616</td>
<td>27778 29066</td>
</tr>
<tr>
<td>3573 96616</td>
<td>43156 88081</td>
<td>42272 22672</td>
</tr>
<tr>
<td>3957 57031</td>
<td>44936 54880</td>
<td>44843 37968</td>
</tr>
<tr>
<td>7434 11233</td>
<td>75303 11731</td>
<td>60967 66494</td>
</tr>
<tr>
<td>11069 90507</td>
<td>54608 90469</td>
<td>74393 90912</td>
</tr>
<tr>
<td>15834 76949</td>
<td>08904 27362</td>
<td>88988 15753</td>
</tr>
<tr>
<td>28474 73406</td>
<td>99486 58439</td>
<td>11932 04326</td>
</tr>
<tr>
<td>40367 25471</td>
<td>42188 26380</td>
<td>14207 90936</td>
</tr>
<tr>
<td>71361 96942</td>
<td>79138 04551</td>
<td>18889 10971</td>
</tr>
<tr>
<td>82824 36407</td>
<td>51608 44501</td>
<td>20349 98960</td>
</tr>
<tr>
<td>88957 81514</td>
<td>98055 54548</td>
<td>21090 02313</td>
</tr>
<tr>
<td>1 55559 41557</td>
<td>67059 71544</td>
<td>27890 13569</td>
</tr>
<tr>
<td>1 79574 77020</td>
<td>19886 65981</td>
<td>29965 43204</td>
</tr>
<tr>
<td>1 94375 57764</td>
<td>05156 30021</td>
<td>31174 95610</td>
</tr>
<tr>
<td>2 19337 01033</td>
<td>96078 99098</td>
<td>33116 23546</td>
</tr>
<tr>
<td>2 52100 58000</td>
<td>17252 74015</td>
<td>35503 56179</td>
</tr>
<tr>
<td>2 55173 55898</td>
<td>34500 77412</td>
<td>35719 29163</td>
</tr>
<tr>
<td>4 07387 35132</td>
<td>62980 70200</td>
<td>45132 43748</td>
</tr>
<tr>
<td>5 27946 43421</td>
<td>43471 71361</td>
<td>51378 23941</td>
</tr>
<tr>
<td>5 34925 55489</td>
<td>14817 98612</td>
<td>51716 80377</td>
</tr>
<tr>
<td>8 08460 12435</td>
<td>54390 22735</td>
<td>63579 08950</td>
</tr>
<tr>
<td>8 12698 03943</td>
<td>72552 74477</td>
<td>63756 09929</td>
</tr>
<tr>
<td>8 16345 93783</td>
<td>72388 10402</td>
<td>63884 15923</td>
</tr>
<tr>
<td>9 64006 87022</td>
<td>43616 26772</td>
<td>69426 46722</td>
</tr>
</tbody>
</table>

Table 2. The function $F(t, L)$

<table>
<thead>
<tr>
<th>t</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L = 10^{24}$</td>
<td>214</td>
<td>41</td>
<td>6</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$L = 10^{28}$</td>
<td>15099</td>
<td>2680</td>
<td>551</td>
<td>105</td>
<td>12</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$L = 10^{32}$</td>
<td>1146700</td>
<td>199736</td>
<td>38915</td>
<td>69313</td>
<td>1290</td>
<td>224</td>
<td>49</td>
<td>11</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$L = 10^{36}$</td>
<td>90062828</td>
<td>15644487</td>
<td>3087051</td>
<td>546925</td>
<td>100920</td>
<td>18924</td>
<td>3778</td>
<td>664</td>
<td>128</td>
<td>24</td>
<td>4</td>
</tr>
</tbody>
</table>
3. C_3-STRONG PSEUDOPRIMES $< 10^{36}$ WITH HEIGHTS $< 10^{12}$

The triple (h_1, h_2, h_3) is called C_3-spsp(2)-acceptable if the h_i are all odd positive integers, pairwise relatively prime, and $h_1 \equiv h_2 \equiv h_3 \mod 4$. Let $q_1 < q_2 < q_3$ be odd primes and $N = q_1 q_2 q_3$ with kernel d, signature (h_1, h_2, h_3), and height $H = h_1 h_2 h_3$. The kernel d is called C_3-spsp(2)-acceptable if (h_1, h_2, h_3) is C_3-spsp(2)-acceptable and

$$d \equiv \overline{x_0} \mod 4H,$$

where $\overline{x_0} = x_0 + j_0 H \equiv 2 \mod 4$, $j_0 = (2 - x_0) H \mod 4$, $0 \leq j_0 \leq 3$, x_0 is the unique integer with $0 \leq x_0 < H$ such that

$$x_0 \equiv \begin{cases} -h_{2,1} - h_{3,1} \mod h_1, \\ -h_{1,2} - h_{3,2} \mod h_2, \\ -h_{1,3} - h_{2,3} \mod h_3, \end{cases}$$

and $h_{i,j} = h_i^{-1} \mod h_j$ for $1 \leq i \neq j \leq 3$.

In [10] Section 2, we described a procedure for finding C_3-spsp(2)’s, to a given limit, with heights bounded. The method is based on the following Lemma 3.1.

Lemma 3.1 ([10] Theorem 2.1). Let $N = q_1 q_2 q_3$ be a product of three different odd primes. Then we have

N is a C_3-spsp(2) \iff its kernel d is C_3-spsp(2)-acceptable.

Let b_i be the ith prime, $t \geq 2$ and $M_t = 4b_2 \cdots b_t$, and suppose that (h_1, h_2, h_3) is C_3-spsp(2)-acceptable. For an odd prime b, define the set

$$S_b^{(h_1,h_2,h_3)} = \{ u : u = 2 + 4k, 0 \leq k < b, \left(\frac{b}{uh_1 + 1} \right) = \left(\frac{b}{uh_2 + 1} \right) = \left(\frac{b}{uh_3 + 1} \right) \}.$$

Suppose

$$S_b^{(h_1,h_2,h_3)} \neq \emptyset$$

for $2 \leq i \leq t$. Define the set

$$R_i^{(h_1,h_2,h_3)} = \{ r : 0 \leq r < M_t, r \equiv u_i \mod 4b_i \text{ for some } u_i \in S_b^{(h_1,h_2,h_3)}, 2 \leq i \leq t \}.$$

The triple (h_1, h_2, h_3) is called C_3-spsp(b_1, b_2, \ldots, b_t)-acceptable if the system of linear congruences

$$\begin{cases} x \equiv \overline{x_0} \mod 4H, \\ x \equiv u_i \mod 4b_i \text{ for some } u_i \in S_{b_i}^{(h_1,h_2,h_3)}, 2 \leq i \leq t, \end{cases}$$

has solutions, or in other words, the system

$$\begin{cases} x \equiv \overline{x_0} \mod 4H, \\ x \equiv r \mod M_t \text{ for some } r \in R_d^{(h_1,h_2,h_3)} \end{cases}$$

has solutions. The kernel d is called C_3-spsp(b_1, b_2, \ldots, b_t)-acceptable if (h_1, h_2, h_3) is C_3-spsp(b_1, b_2, \ldots, b_t)-acceptable and (3.2) holds with x replaced by d.

In [10] Section 4, we speeded up the procedure described in [10] Section 2 so that we can find all C_3-spsp’s less than a larger limit $L = 10^{50}$, with the same signature $(1, 37, 41)$, to the first $t \geq 9$ prime bases. The accelerated procedure is based on the following Lemma 3.2.
Lemma 3.2 ([10 Corollary 4.1]). Let $N = q_1q_2q_3$ be a product of three different odd primes and let b_i be the ith prime and $t \geq 2$; and suppose (h_1, h_2, h_3) is C_3-spsp(2)-acceptable. Then N is a C_3-spsp(b_1, b_2, \ldots, b_t) if and only if its kernel d is C_3-spsp(b_1, b_2, \ldots, b_t)-acceptable.

Now our objective is to find all $N = q_1q_2q_3 < L = 10^{36}$ which are C_3-spsp’s to the first $t = 9$ prime bases with heights $H < 10^{12}$. For this purpose, we use Procedure 3.1 (based on Lemma 3.1) for finding all N with heights $10^9 < H < 10^{12}$; and use Procedure 3.2 (based on Lemma 3.2) for finding all N with heights $H < 10^9$.

PROCEDURE 3.1. Finding C_3-spsp(b_1, \ldots, b_t)’s < L with $10^9 < H < 10^{12}$;
BEGIN For each C_3-spsp(2)-acceptable triple (h_1, h_2, h_3) with $10^9 < H = h_1h_2h_3 < 10^{12}$ Do
begin Using the Euclidean Algorithm and the Chinese Remainder Theorem, compute the seed x_0 of the triple (h_1, h_2, h_3):
$x_0 \leftarrow x_0; j_0 \leftarrow (6 - x_0 \mod 4)H \mod 4; If j_0 > 0 Then x_0 \leftarrow x_0 + j_0H;$
For $i := 1 To 3 Do $q_i \leftarrow x_0h_i + 1$; $q_1q_2 \leftarrow q_1 \cdot q_2$; $N \leftarrow q_1q_2 \cdot q_3$; If $N < L$ Then
Begin If $2^N \equiv 2 \mod q_1q_2$ Then
begin If (q_1, q_2 and q_3 are all sprp’s to the first several prime bases) And (N is an spsp(b_1, \ldots, b_t)) Then
output($N, q_1, q_2, q_3, h_1, h_2, h_3, \ldots$)
end;
End
end
END.

Remark 3.1. Procedure 3.1 is in fact the same but simpler than the original procedure described in [10 Section 2] for finding all C_3-spsp(2)’s, but we save only those C_3-spsp’s to the first nine prime bases. Note that, “simpler” means that in the sentence “If $N < L$ Then Begin … End” there is no loop “repeat … until $N > L$”, since $H > 10^9$ and $N < 10^{36}$.

Remark 3.2. Using Procedure 3.1 for finding all N with heights $10^9 < H < 10^{12}$, we use 10 PCs. We divide the computations into ten parts with each on one PC: $10^9 < H < 10^{11}$, $j \cdot 10^{11} < H < (j + 1) \cdot 10^{11}$, $1 \leq j < 9$. For each part $H_0 \leq H = h_1h_2h_3 \leq H_1$, we loop on C_3-spsp(2)-acceptable triples (h_1, h_2, h_3) with

$$1 \leq h_1 \leq \left\lfloor e^{\frac{H_1}{h_1h_2}} \right\rfloor, \quad h_1 + 4 \leq h_2 \leq \left\lfloor \frac{H_1}{h_1} \right\rfloor,$$

and

$$\max \left\{ h_2, \frac{H_0}{h_1h_2} \right\} < h_3 \leq \min \left\{ \frac{H_1}{h_1h_2}, \frac{1}{8} \left(h_1 + h_2 + \sqrt{(h_1 + h_2)^2 + 8h_1h_2\sqrt{L}} \right) \right\}.$$

Remark 3.3. Procedure 3.2 is an extended version of the accelerated procedure which was mentioned (but not explicitly written) and which ran only for the triple $(1, 37, 41)$ in [10 Section 4], whereas Procedure 3.2 loops on all C_3-acceptable triples (h_1, h_2, h_3) with $h_1h_2h_3 < 10^9$.

PROCEDURE 3.2. Finding C_3-spsp(b_1, \ldots, b_t)’s < L with heights $H < 10^9$;
BEGIN For each C_3-spsp(2)-acceptable triple (h_1, h_2, h_3)
with $H = h_1h_2h_3 < 10^9$ Do
 begin Using the Euclidean Algorithm and the Chinese Remainder Theorem,
 compute the seed x_0 of the triple (h_1, h_2, h_3):
 $x_0 \leftarrow x_0; \quad j_0 \leftarrow (6 - x_0 \mod 4)H \mod 4; \quad \text{If } j_0 > 0 \text{ Then } x_0 \leftarrow x_0 + j_0H;$
 Compute the sets $S_{h_i}^{(h_1, h_2, h_3)}$ for $2 \leq i \leq t$;
 Using the Chinese Remainder Theorem, compute the set $R_t^{(h_1, h_2, h_3)}$;
 For each element r of the set $R_t^{(h_1, h_2, h_3)}$ Do
 Begin Using the Chinese Remainder Theorem, find a solution $x < L = \text{lcm}[4H, M_t]$ to the system of congruence
 \[
 \begin{cases}
 x \equiv x_0 \mod 4H, \\
 x \equiv r \mod M_t;
 \end{cases}
 \]
 For $i := 1$ To 3 Do $q_i := xh_i + 1; \quad q_1q_2 := q_1 \cdot q_2; \quad N := q_1q_2 \cdot q_3;
 If $N < L$ Then
 repeat If $2N \equiv 2 \mod q_1q_2$ Then
 begin If $(q_1, q_2$ and q_3 are all sprp’s to the first several prime bases) And $(N$ is an spsp$(b_1, \ldots, b_t))$ Then
 output$(N, q_1, q_2, q_3, h_1, h_2, h_3, \ldots)$
 end:
 For $i := 1$ To 3 Do $q_i := q_i + h_iL$;
 $q_1q_2 := q_1 \cdot q_2; \quad N := q_1q_2 \cdot q_3$
 until $N > L$
 End End
 End
 END.

The two Delphi-Pascal programs with multi-precision package partially written in Assembly language ran about 1600 hours in total on a PC Pentium IV/1.8GHz to get all C_t-spsp’s $< 10^{36}$ to the first nine prime bases 2, 3, 5, 7, 11, 13, 17, 19, and 23, with heights $H < 10^{12}$. There are in total 43278 numbers, among which 20 numbers are spsp’s to the first 15 prime bases up to 47 (listed in Table 3), 2 numbers are spsp’s to the first 16 prime bases up to 53. No C_t-spsp’s $< 10^{36}$ to the first 17 prime bases with heights $< 10^{12}$ are found. Define the function

\[(3.4) \quad f(t, L, \mathcal{H}) = \# \{ N : N \text{ is a } C_t\text{-spsp}(b_1, b_2, \ldots, b_t) < L \text{ with height } < \mathcal{H} \} . \]

In Table 4 we give $f(t, L, 10^{12})$ for $9 \leq t \leq 16$ and $L = 10^{24}, \ldots, 10^{36}$. In Table 5 we give $f(t, 10^{36}, \mathcal{H})$ for $9 \leq t \leq 16$ and $\mathcal{H} = 10^2, 10^3, \ldots, 10^{12}$. Note that $f(t, 10^{36}, 10^{12}) = 0$ for $t > 16$.

Remark 3.4. Procedure 3.2 ran only 11 hours on a PC Pentium IV/1.8GHz for computing all C_t-spsp(b_1, b_2, \ldots, b_9)’s $< 10^{36}$ with heights $H < 10^9$. Note that, since

\[\max \left\{ \# R_y^{(h_1, h_2, h_3)} : (h_1, h_2, h_3) \text{ is } C_t\text{-spsp}(b_1, b_2, \ldots, b_9)\text{-acceptable} \right\} = 129600, \]

each $R_y^{(h_1, h_2, h_3)}$ is of suitable size to fit in the memory of a PC Pentium IV/1.8GHz.
Table 3. List of all C_3-spsp’s $n = q_1 q_2 q_3 < 10^{36}$ to the first 15 prime bases with signature (h_1, h_2, h_3) and height $H = h_1 h_2 h_3 < 10^{12}$

<table>
<thead>
<tr>
<th>$n = q_1 q_2 q_3$</th>
<th>q_1</th>
<th>h_1</th>
<th>h_2</th>
<th>h_3</th>
<th>spsp-base</th>
</tr>
</thead>
<tbody>
<tr>
<td>168 79087 75236 76911</td>
<td>80019</td>
<td>24541</td>
<td>71451</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>404 00641 91965 17352</td>
<td>34018 19081</td>
<td>76341</td>
<td>17</td>
<td>21</td>
<td>9183</td>
</tr>
<tr>
<td>638 44829 45542 74988</td>
<td>12832 64086</td>
<td>78791</td>
<td>855448831</td>
<td>1</td>
<td>29</td>
</tr>
<tr>
<td>7386 49195 93228 96977</td>
<td>41258 18632 67131</td>
<td>6336781291</td>
<td>1</td>
<td>13</td>
<td>2233</td>
</tr>
<tr>
<td>14987 06615 24763 89521</td>
<td>37339 79490 57667</td>
<td>34754907427</td>
<td>1</td>
<td>17</td>
<td>21</td>
</tr>
<tr>
<td>22072 88430 42828 12126</td>
<td>78317 84085 82551</td>
<td>53394561991</td>
<td>1</td>
<td>5</td>
<td>89</td>
</tr>
<tr>
<td>22237 51676 18766 76325</td>
<td>87593 37145 05851</td>
<td>90866269051</td>
<td>5</td>
<td>13</td>
<td>57</td>
</tr>
<tr>
<td>22535 13575 57515 82593</td>
<td>57550 85590 41539</td>
<td>24238072997</td>
<td>1</td>
<td>341</td>
<td>4641</td>
</tr>
<tr>
<td>33197 80568 91606 40280</td>
<td>97700 67802 95751</td>
<td>42096868351</td>
<td>1</td>
<td>5</td>
<td>89</td>
</tr>
<tr>
<td>73956 31848 86374 65060</td>
<td>47922 10797 09511</td>
<td>4862377591</td>
<td>5</td>
<td>261</td>
<td>61621</td>
</tr>
<tr>
<td>84699 94086 53768 76461</td>
<td>36135 59745 27971</td>
<td>51195714571</td>
<td>3</td>
<td>23</td>
<td>247</td>
</tr>
<tr>
<td>86114 94622 43343 91256</td>
<td>73057 32901 32851</td>
<td>243674295091</td>
<td>41</td>
<td>69</td>
<td>145</td>
</tr>
<tr>
<td>1 57909 67938 52590 51550</td>
<td>19158 97075 64171</td>
<td>15045483979</td>
<td>1</td>
<td>165</td>
<td>281</td>
</tr>
<tr>
<td>1 64290 81802 11124</td>
<td>38861 65231 15234</td>
<td>60571 38421</td>
<td>19</td>
<td>11</td>
<td>19</td>
</tr>
<tr>
<td>3 29688 82238 37447 72420</td>
<td>50277 30066 57151</td>
<td>5187786051</td>
<td>1</td>
<td>5</td>
<td>472269</td>
</tr>
<tr>
<td>3 81295 37619 60634</td>
<td>49827 51838 84631</td>
<td>50491</td>
<td>122980937539</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>4 89694 76611 41627 89165</td>
<td>23631 96679 44651</td>
<td>112306837411</td>
<td>1</td>
<td>5</td>
<td>69</td>
</tr>
<tr>
<td>6 15953 28171 54420 32393</td>
<td>10712 67951 94451</td>
<td>326859034411</td>
<td>5</td>
<td>9</td>
<td>49</td>
</tr>
<tr>
<td>6 63871 52401 35144 81984</td>
<td>27536 68390 39183</td>
<td>187835202127</td>
<td>11</td>
<td>31</td>
<td>391</td>
</tr>
<tr>
<td>6 78033 04770 25874 16969</td>
<td>29260 30947 02251</td>
<td>114879489139</td>
<td>3</td>
<td>23</td>
<td>175</td>
</tr>
</tbody>
</table>

Table 4. The function $f(t, L, 10^{12})$

<table>
<thead>
<tr>
<th>t</th>
<th>$L = 10^{24}$</th>
<th>$L = 10^{28}$</th>
<th>$L = 10^{32}$</th>
<th>$L = 10^{36}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>21</td>
<td>217</td>
<td>2808</td>
<td>43278</td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td>70</td>
<td>821</td>
<td>12623</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td>20</td>
<td>249</td>
<td>3655</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>6</td>
<td>70</td>
<td>1019</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>271</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>80</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 5. The function $f(t, 10^{36}, H)$

<table>
<thead>
<tr>
<th>$H = 10^4$</th>
<th>$H = 10^5$</th>
<th>$H = 10^6$</th>
<th>$H = 10^7$</th>
<th>$H = 10^8$</th>
<th>$H = 10^9$</th>
<th>$H = 10^{10}$</th>
<th>$H = 10^{11}$</th>
<th>$H = 10^{12}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>894</td>
<td>814</td>
<td>2531</td>
<td>922</td>
<td>1270</td>
<td>12270</td>
<td>12469</td>
<td>12567</td>
<td>12623</td>
</tr>
<tr>
<td>211</td>
<td>221</td>
<td>710</td>
<td>989</td>
<td>989</td>
<td>3548</td>
<td>3609</td>
<td>3637</td>
<td>3655</td>
</tr>
<tr>
<td>51</td>
<td>16</td>
<td>176</td>
<td>42</td>
<td>19</td>
<td>79</td>
<td>103</td>
<td>1011</td>
<td>1019</td>
</tr>
<tr>
<td>16</td>
<td>4</td>
<td>12</td>
<td>19</td>
<td>79</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

4. DISCUSSION

In Tables 6, 7, 8, 9, and 10 we give $f(t, \psi'_u, H)$ for $u = 13, 14, 15, 16$ and 18; and for $t \geq 9$, $H \leq 10^{12}$. In these tables, if $f(t, \psi'_u, H) = 0$ for $H = 10^{12}$ and for $t \geq t_0$, then the columns for $t \geq t_0$ are all deleted since all entries are 0.
Table 6. The function $f(t, \psi'_{13}, \mathcal{H})$

<table>
<thead>
<tr>
<th>t</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathcal{H} = 10^1$</td>
<td>6</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>$\mathcal{H} = 10^2$</td>
<td>19</td>
<td>11</td>
<td>4</td>
</tr>
<tr>
<td>$\mathcal{H} = 10^3$</td>
<td>24</td>
<td>12</td>
<td>5</td>
</tr>
<tr>
<td>$\mathcal{H} = 10^4$</td>
<td>25</td>
<td>12</td>
<td>5</td>
</tr>
<tr>
<td>$\mathcal{H} = 10^5$</td>
<td>26</td>
<td>12</td>
<td>5</td>
</tr>
<tr>
<td>$\mathcal{H} = 10^6$</td>
<td>27</td>
<td>13</td>
<td>5</td>
</tr>
<tr>
<td>$\mathcal{H} = 10^7$</td>
<td>28</td>
<td>13</td>
<td>5</td>
</tr>
<tr>
<td>$\mathcal{H} = 10^8$</td>
<td>28</td>
<td>13</td>
<td>5</td>
</tr>
<tr>
<td>$\mathcal{H} = 10^9$</td>
<td>28</td>
<td>13</td>
<td>5</td>
</tr>
<tr>
<td>$\mathcal{H} = 10^{10}$</td>
<td>28</td>
<td>13</td>
<td>5</td>
</tr>
<tr>
<td>$\mathcal{H} = 10^{11}$</td>
<td>28</td>
<td>13</td>
<td>5</td>
</tr>
<tr>
<td>$\mathcal{H} = 10^{12}$</td>
<td>28</td>
<td>13</td>
<td>5</td>
</tr>
</tbody>
</table>

Table 7. The function $f(t, \psi'_{14}, \mathcal{H})$

<table>
<thead>
<tr>
<th>t</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathcal{H} = 10^2$</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\mathcal{H} = 10^3$</td>
<td>49</td>
<td>15</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\mathcal{H} = 10^4$</td>
<td>95</td>
<td>37</td>
<td>9</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$\mathcal{H} = 10^5$</td>
<td>129</td>
<td>44</td>
<td>12</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>$\mathcal{H} = 10^6$</td>
<td>150</td>
<td>52</td>
<td>13</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>$\mathcal{H} = 10^7$</td>
<td>161</td>
<td>56</td>
<td>14</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>$\mathcal{H} = 10^8$</td>
<td>172</td>
<td>58</td>
<td>14</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>$\mathcal{H} = 10^9$</td>
<td>179</td>
<td>60</td>
<td>15</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>$\mathcal{H} = 10^{10}$</td>
<td>180</td>
<td>60</td>
<td>15</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>$\mathcal{H} = 10^{11}$</td>
<td>180</td>
<td>60</td>
<td>15</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>$\mathcal{H} = 10^{12}$</td>
<td>182</td>
<td>61</td>
<td>15</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 8. The function $f(t, \psi'_{15}, \mathcal{H})$

<table>
<thead>
<tr>
<th>t</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathcal{H} = 10^2$</td>
<td>9</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\mathcal{H} = 10^3$</td>
<td>91</td>
<td>26</td>
<td>5</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$\mathcal{H} = 10^4$</td>
<td>180</td>
<td>60</td>
<td>15</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>$\mathcal{H} = 10^5$</td>
<td>245</td>
<td>71</td>
<td>21</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>$\mathcal{H} = 10^6$</td>
<td>283</td>
<td>83</td>
<td>25</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>$\mathcal{H} = 10^7$</td>
<td>311</td>
<td>93</td>
<td>26</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>$\mathcal{H} = 10^8$</td>
<td>336</td>
<td>97</td>
<td>27</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>$\mathcal{H} = 10^9$</td>
<td>344</td>
<td>99</td>
<td>28</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>$\mathcal{H} = 10^{10}$</td>
<td>348</td>
<td>101</td>
<td>28</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>$\mathcal{H} = 10^{11}$</td>
<td>348</td>
<td>101</td>
<td>28</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>$\mathcal{H} = 10^{12}$</td>
<td>350</td>
<td>102</td>
<td>28</td>
<td>6</td>
<td>1</td>
</tr>
</tbody>
</table>
From Table 6 we may predict that \(f(13, \psi_{13}', H) = 0 \) for \(H > 10^{12} \) and so that
\[
\psi_{13}' < \psi_{13}''.
\]
(4.1)

From Table 7 we may predict that \(f(14, \psi_{14}', H) = 0 \) for \(H > 10^{12} \) and so that
\[
\psi_{14}' < \psi_{14}''.
\]
(4.2)

From Table 8 we may predict that \(f(15, \psi_{15}', H) = 0 \) for \(H > 10^{12} \) and so that
\[
\psi_{15}' < \psi_{15}''.
\]
(4.3)

From Table 9 we may predict that \(f(16, \psi_{16}', H) = 0 \) for \(H > 10^{12} \) and so that
\[
\psi_{16}' = \psi_{17}' < \psi_{16}'' \leq \psi_{17}''.
\]
(4.4)

From Table 10 we may predict that \(f(18, \psi_{18}', H) = 0 \) for \(H > 10^{12} \) and so that
\[
\psi_{18}' = \psi_{19}' < \psi_{18}'' \leq \psi_{19}''.
\]
(4.5)

\begin{table}[h]
\centering
\caption{The function \(f(t, \psi_{16}', H) \)}
\begin{tabular}{|c|c|c|c|c|c|}
\hline
\(t \) & 9 & 10 & 11 & 12 & 13 \\
\hline
\(H = 10^2 \) & 11 & 4 & 0 & 0 & 0 \\
\(H = 10^3 \) & 165 & 50 & 13 & 4 & 1 \\
\(H = 10^4 \) & 332 & 106 & 30 & 7 & 2 \\
\(H = 10^5 \) & 452 & 128 & 42 & 12 & 2 \\
\(H = 10^6 \) & 519 & 146 & 46 & 12 & 2 \\
\(H = 10^7 \) & 570 & 164 & 50 & 14 & 2 \\
\(H = 10^8 \) & 605 & 169 & 51 & 14 & 2 \\
\(H = 10^9 \) & 618 & 175 & 52 & 15 & 3 \\
\(H = 10^{10} \) & 622 & 177 & 52 & 15 & 3 \\
\(H = 10^{11} \) & 625 & 177 & 52 & 15 & 3 \\
\(H = 10^{12} \) & 630 & 179 & 53 & 15 & 3 \\
\hline
\end{tabular}
\end{table}

\begin{table}[h]
\centering
\caption{The function \(f(t, \psi_{18}', H) \)}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline
\(t \) & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
\hline
\(H = 10^2 \) & 133 & 31 & 8 & 3 & 0 & 0 & 0 \\
\(H = 10^3 \) & 1641 & 438 & 104 & 29 & 6 & 0 & 0 \\
\(H = 10^4 \) & 3212 & 900 & 251 & 75 & 19 & 4 & 1 \\
\(H = 10^5 \) & 4424 & 1242 & 370 & 110 & 26 & 6 & 1 \\
\(H = 10^6 \) & 5207 & 1505 & 449 & 133 & 30 & 9 & 2 \\
\(H = 10^7 \) & 5714 & 1658 & 491 & 142 & 33 & 11 & 3 \\
\(H = 10^8 \) & 6036 & 1745 & 519 & 150 & 35 & 13 & 3 \\
\(H = 10^9 \) & 6211 & 1797 & 527 & 153 & 38 & 14 & 3 \\
\(H = 10^{10} \) & 6309 & 1832 & 544 & 157 & 39 & 15 & 3 \\
\(H = 10^{11} \) & 6352 & 1842 & 547 & 158 & 39 & 15 & 3 \\
\(H = 10^{12} \) & 6384 & 1853 & 549 & 159 & 39 & 15 & 3 \\
\hline
\end{tabular}
\end{table}
Since the conditions for a number to be a C_3-spsp are more stringent than those for it to be a K2-spsp, K2-spsp's are much more numerous than C_3-spsp's as can be seen from Tables 2 and 4. Thus, combining (4.1)-(4.5) and (1.8), it is reasonable to predict that
\begin{equation}
\psi'_t < \psi''_t
\end{equation}
for any $t \geq 12$.

ACKNOWLEDGMENT

I thank the referee for kind and helpful comments that improved the presentation of the paper.

REFERENCES

Department of Mathematics, Anhui Normal University, 241000 Wuhu, Anhui, People’s Republic of China

E-mail address: zhangzhx@mail.ah.cn

E-mail address: ahnu_zzx@sina.com

URL: http://www.ahnu.edu.cn/~math/jiaoshou/zzx.htm

URL: http://my.hn8868.com/zhangzhx/