Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Odd perfect numbers have at least nine distinct prime factors


Author: Pace P. Nielsen
Journal: Math. Comp. 76 (2007), 2109-2126
MSC (2000): Primary 11N25; Secondary 11Y50
DOI: https://doi.org/10.1090/S0025-5718-07-01990-4
Published electronically: May 9, 2007
MathSciNet review: 2336286
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: An odd perfect number, $ N$, is shown to have at least nine distinct prime factors. If $ 3\nmid N$ then $ N$ must have at least twelve distinct prime divisors. The proof ultimately avoids previous computational results for odd perfect numbers.


References [Enhancements On Off] (What's this?)

  • 1. A. Bang, Taltheoretiske Undersøgelser, Tidsskrift Math. 5 IV (1886), 70-80, 130-137.
  • 2. Geo. D. Birkhoff and H. S. Vandiver, On the integral divisors of $ a\sp n-b\sp n$, Ann. of Math. (2) 5 (1904), no. 4, 173-180. MR 1503541
  • 3. R. P. Brent, G. L. Cohen, and H. J. J. te Riele, Improved techniques for lower bounds for odd perfect numbers, Math. Comp. 57 (1991), no. 196, 857-868. MR 1094940 (92c:11004)
  • 4. Joseph E. Z. Chein, An odd perfect number has at least 8 prime factors, Ph.D. thesis, Pennsylvania State University, 1979.
  • 5. Graeme L. Cohen and Ronald M. Sorli, On the number of distinct prime factors of an odd perfect number, J. Discrete Algorithms 1 (2003), no. 1, 21-35, Combinatorial algorithms. MR 2016472 (2004h:11003)
  • 6. R. J. Cook, Bounds for odd perfect numbers, Number theory (Ottawa, ON, 1996), CRM Proc. Lecture Notes, vol. 19, Amer. Math. Soc., Providence, RI, 1999, pp. 67-71. MR 1684591 (2000d:11010)
  • 7. Leonard Eugene Dickson, Finiteness of the odd perfect and primitive abundant numbers with $ n$ distinct prime factors, Amer. J. Math. 35 (1913), no. 4, 413-422. MR 1506194
  • 8. Otto Grün, Über ungerade vollkommene Zahlen, Math. Z. 55 (1952), 353-354. MR 0053123 (14,724g)
  • 9. Peter Hagis, Jr., Outline of a proof that every odd perfect number has at least eight prime factors, Math. Comp. 35 (1980), no. 151, 1027-1032. MR 572873 (81k:10004)
  • 10. -, Sketch of a proof that an odd perfect number relatively prime to $ 3$ has at least eleven prime factors, Math. Comp. 40 (1983), no. 161, 399-404. MR 679455 (85b:11004)
  • 11. Kevin G. Hare, More on the total number of prime factors of an odd perfect number, Math. Comp. 74 (2005), no. 250, 1003-1008 (electronic). MR 2114661 (2005h:11010)
  • 12. D. R. Heath-Brown, Odd perfect numbers, Math. Proc. Cambridge Philos. Soc. 115 (1994), no. 2, 191-196. MR 1277055 (96b:11130)
  • 13. Douglas E. Iannucci, The second largest prime divisor of an odd perfect number exceeds ten thousand, Math. Comp. 68 (1999), no. 228, 1749-1760. MR 1651761 (2000i:11200)
  • 14. -, The third largest prime divisor of an odd perfect number exceeds one hundred, Math. Comp. 69 (2000), no. 230, 867-879. MR 1651762 (2000i:11201)
  • 15. Paul M. Jenkins, Odd perfect numbers have a prime factor exceeding $ 10\sp 7$, Math. Comp. 72 (2003), no. 243, 1549-1554 (electronic). MR 1972752 (2004a:11002)
  • 16. Wilfrid Keller and Jörg Richstein, Solutions of the congruence $ a\sp {p-1}\equiv1\pmod{p\sp r}$, Math. Comp. 74 (2005), no. 250, 927-936 (electronic). MR 2114655 (2005i:11004)
  • 17. Masao Kishore, On odd perfect, quasiperfect, and odd almost perfect numbers, Math. Comp. 36 (1981), no. 154, 583-586. MR 606516 (82h:10006)
  • 18. -, Odd perfect numbers not divisible by $ 3$. II, Math. Comp. 40 (1983), no. 161, 405-411. MR 679456 (84d:10009)
  • 19. Wayne L. McDaniel, The non-existence of odd perfect numbers of a certain form, Arch. Math. (Basel) 21 (1970), 52-53. MR 0258723 (41:3369)
  • 20. Peter L. Montgomery, New solutions of $ a\sp {p-1}\equiv 1\pmod {p\sp 2}$, Math. Comp. 61 (1993), no. 203, 361-363. MR 1182246 (94d:11003)
  • 21. Trygve Nagell, Introduction to Number Theory, John Wiley & Sons Inc., New York, 1951. MR 0043111 (13,207b)
  • 22. Pace P. Nielsen, An upper bound for odd perfect numbers, Integers 3 (2003), A14, 9 pp. (electronic). MR 2036480 (2004k:11009)
  • 23. Carl Pomerance, Odd perfect numbers are divisible by at least seven distinct primes, Acta Arith. 25 (1973/74), 265-300. MR 0340169 (49:4925)
  • 24. -, Multiply perfect numbers, Mersenne primes, and effective computability, Math. Ann. 226 (1977), no. 3, 195-206. MR 0439730 (55:12616)
  • 25. John Voight, On the nonexistence of odd perfect numbers, MASS selecta, Amer. Math. Soc., Providence, RI, 2003, pp. 293-300. MR 2027187 (2004j:11006)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 11N25, 11Y50

Retrieve articles in all journals with MSC (2000): 11N25, 11Y50


Additional Information

Pace P. Nielsen
Affiliation: Department of Mathematics, University of Iowa, Iowa City, Iowa 52242
Email: pace_nielsen@hotmail.com

DOI: https://doi.org/10.1090/S0025-5718-07-01990-4
Keywords: Abundant, deficient, odd perfect
Received by editor(s): April 1, 2006
Received by editor(s) in revised form: September 1, 2006
Published electronically: May 9, 2007
Article copyright: © Copyright 2007 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society