Computing -functions with large conductor

Author:
Jeffrey Stopple

Journal:
Math. Comp. **76** (2007), 2051-2062

MSC (2000):
Primary 11Y16, 11Y35

DOI:
https://doi.org/10.1090/S0025-5718-07-01994-1

Published electronically:
April 19, 2007

MathSciNet review:
2336281

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: An algorithm is given to efficiently compute -functions with large conductor in a restricted range of the critical strip. Examples are included for about 24000 dihedral Galois representations with conductor near . The data shows good agreement with a symplectic random matrix model.

**1.**C. Bays, K. Ford, R. Hudson, and M. Rubinstein,*Zeros of Dirichlet -functions near the real axis and Chebyshev's bias*, J. Number Theory,**87**, 2001, pp. 54-76. MR**1816036 (2001m:11148)****2.**G. Dahlquist, Numerical Methods, Prentice Hall, 1974. MR**0368379 (51:4620)****3.**N. Elkies and N. Rogers,*Elliptic curves of high rank*, in Algorithmic Number Theory, Lecture Notes in Comput. Sci.,**3076**, Springer, Berlin, 2004, pp. 184-193. MR**2137353 (2006c:11064)****4.**E. Fouvry and H. Iwaniec,*Low-lying zeros of dihedral -functions*, Duke J. Math.,**116**, 2003, pp. 189-217. MR**1953291 (2003k:11139)****5.**H. Iwaniec, Topics in Classical Automorphic Forms, Graduate Studies in Mathematics**17**, AMS, 1991. MR**1474964 (98e:11051)****6.**H. Iwaniec and E. Kowalski, Analytic Number Theory, AMS Colloquium Publications**53**, 2004. MR**2061214 (2005h:11005)****7.**N. Katz, and P. Sarnak,*Zeros of zeta functions and symmetry*, Bull. Amer. Math. Soc.,**36**, no. 1, 1999, pp. 1-26. MR**1640151 (2000f:11114)****8.**J. Lagarias and A. Odlyzko,*On computing Artin -functions in the critical strip*, Math. Comp.**33**, 147, 1979, pp. 1081-1095. MR**528062 (80g:12010)****9.**S. Wolfram, The Mathematica Book, 4th ed., 1999. MR**1721106 (2000h:68001)****10.**H. Montgomery, and P. Weinberger,*Notes on small class numbers*, Acta Arith.**XXIV**1974, pp. 529-542. MR**0357373 (50:9841)****11.**A. Odlyzko and H. te Riele,*Disproof of the Mertens' conjecture*, J. Reine Angew. Math.**357**(1985), pp. 138-160. MR**783538 (86m:11070)****12.**A. Odlyzko and A. Schönhage,*Fast algorithms for multiple evaluations of the Riemann zeta function*, Trans. Amer. Math. Soc.**309**, 2, 1988 pp. 797-809. MR**961614 (89j:11083)****13.**PARI-GP. By C. Batut, D. Bernardi, H. Cohen , and M. Olivier, currently maintained by K. Belabas.`http://www.parigp-home.de`**14.**PARI-GP mailing list, available at`http://www.parigp-home.de/lists/200212aav`**15.**M. Rubinstein,*Evidence for a spectral interpretation of the zeros of -functions*, Ph.D. thesis, Princeton, 1998.**16.**R. Rumely,*Numerical computations concerning the ERH*, Math. Comp.,**61**, 203, 1993, pp. 415-440. MR**1195435 (94b:11085)****17.**P. Weinberger,*On small zeros of Dirichlet L-functions*, Math. Comp.,**29**no. 129, 1975, pp. 319-328. MR**0376564 (51:12739)**

Retrieve articles in *Mathematics of Computation*
with MSC (2000):
11Y16,
11Y35

Retrieve articles in all journals with MSC (2000): 11Y16, 11Y35

Additional Information

**Jeffrey Stopple**

Affiliation:
Department of Mathematics, University of California Santa Barbara, Santa Barbara, California 93106-0001

Email:
stopple@math.ucsb.edu

DOI:
https://doi.org/10.1090/S0025-5718-07-01994-1

Received by editor(s):
June 5, 2003

Received by editor(s) in revised form:
May 6, 2006

Published electronically:
April 19, 2007

Article copyright:
© Copyright 2007
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.