Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



On pseudospectra of matrix polynomials and their boundaries

Authors: Lyonell Boulton, Peter Lancaster and Panayiotis Psarrakos
Journal: Math. Comp. 77 (2008), 313-334
MSC (2000): Primary 65F15; Secondary 65F35, 93D09
Published electronically: May 11, 2007
MathSciNet review: 2353955
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In the first part of this paper (Sections 2-4), the main concern is with the boundary of the pseudospectrum of a matrix polynomial and, particularly, with smoothness properties of the boundary. In the second part (Sections 5-6), results are obtained concerning the number of connected components of pseudospectra, as well as results concerning matrix polynomials with multiple eigenvalues, or the proximity to such polynomials.

References [Enhancements On Off] (What's this?)

  • 1. L.V. Ahlfors, Complex Analysis, McGraw Hill, New York (1953). MR 510197 (80c:30001)
  • 2. R. Alam and S. Bora, On sensitivity of eigenvalues and eigendecompositions of matrices, Linear Algebra Appl., 396 (2005) 273-301. MR 2112210 (2005i:15013)
  • 3. L. Boulton, Non-variational approximation of discrete eigenvalues of self-adjoint operators, IMA J. Numer. Anal., 27 (2007), 102-121.
  • 4. S. Boyd and C.A. Desoer, Subharmonic functions and performance bounds on linear time-invariant feedback systems, IMA J. Math. Control Inform., 2 (1985) 153-170. MR 934961
  • 5. E. Brieskorn and H. Knörrer, Plane Algebraic Curves, Birkhäuser Verlag, Basel (1986). MR 886476 (88a:14001)
  • 6. E.B. Davies, Spectral enclosures and complex resonances for general self-adjoint operators, LMS J. Comput. Math., 1 (1998) 42-74. MR 1635727 (2000e:47043)
  • 7. J. Demmel, A counterexample for two conjectures about stability, IEEE Trans. Auto. Control, AC-32 (1987) 340-342.
  • 8. E. Gallestey, Computing spectral value sets using the subharmonicity of the norm of rational matrices, BIT, 38 (1998) 22-33. MR 1621060 (99b:65045)
  • 9. I. Gohberg, L. Rodman, and P. Lancaster, Matrix Polynomials, Academic Press, Orlando, (1982). MR 662418 (84c:15012)
  • 10. T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, New York (1980).
  • 11. K. Kendig, Elementary Algebraic Geometry, Springer Verlag, New York (1977). MR 0447222 (56:5537)
  • 12. P. Lancaster and P. Psarrakos, On the pseudospectra of matrix polynomials, SIAM J. Matrix Anal. Appl., 27 (2005) 115-129. MR 2176811 (2006h:65058)
  • 13. A.N. Malyshev, A formula for the 2-norm distance from a matrix to the set of matrices with multiple eigenvalues, Numer. Math., 83 (1999) 443-454. MR 1715565 (2000i:65057)
  • 14. R.G. Mosier, Root neighbourhoods of a polynomial, Math. Comp., 47 (1986) 265-273. MR 842134 (87k:65056)
  • 15. J.-G. Sun, A note on simple non-zero singular values, J. Comput. Math., 6 (1988) 258-266. MR 967885 (89i:15014)
  • 16. F. Tisseur, Backward error and condition of polynomial eigenvalue problems, Linear Algebra Appl., 309 (2000) 339-361. MR 1758374 (2001c:65046)
  • 17. F. Tisseur and N.J. Higham, Structured pseudospectra for polynomial eigenvalue problems with applications, SIAM J. Matrix Anal. Appl., 23 (2001) 187-208. MR 1856605 (2002k:15024)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 65F15, 65F35, 93D09

Retrieve articles in all journals with MSC (2000): 65F15, 65F35, 93D09

Additional Information

Lyonell Boulton
Affiliation: Department of Mathematics and the Maxwell Institute for Mathematical Sciences, Heriot-Watt University, Edinburgh EH14 2AS, United Kingdom

Peter Lancaster
Affiliation: Department of Mathematics and Statistics, University of Calgary, Calgary AB, Canada T2N 1N4

Panayiotis Psarrakos
Affiliation: Department of Mathematics, National Technical University, Zografou Campus, 5780 Athens, Greece

Keywords: Matrix polynomials, perturbation of eigenvalues, singular values, pseudospectra.
Received by editor(s): April 6, 2006
Received by editor(s) in revised form: October 29, 2006
Published electronically: May 11, 2007
Article copyright: © Copyright 2007 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society