Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Evaluating the Evans function: Order reduction in numerical methods


Authors: Simon Malham and Jitse Niesen
Journal: Math. Comp. 77 (2008), 159-179
MSC (2000): Primary 65L15; Secondary 65L20, 65N25
DOI: https://doi.org/10.1090/S0025-5718-07-02016-9
Published electronically: July 26, 2007
MathSciNet review: 2353947
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the numerical evaluation of the Evans function, a Wronskian-like determinant that arises in the study of the stability of travelling waves. Constructing the Evans function involves matching the solutions of a linear ordinary differential equation depending on the spectral parameter. The problem becomes stiff as the spectral parameter grows. Consequently, the Gauss-Legendre method has previously been used for such problems; however more recently, methods based on the Magnus expansion have been proposed. Here we extensively examine the stiff regime for a general scalar Schrödinger operator. We show that although the fourth-order Magnus method suffers from order reduction, a fortunate cancellation when computing the Evans matching function means that fourth-order convergence in the end result is preserved. The Gauss-Legendre method does not suffer from order reduction, but it does not experience the cancellation either, and thus it has the same order of convergence in the end result. Finally we discuss the relative merits of both methods as spectral tools.


References [Enhancements On Off] (What's this?)

  • 1. A. L. Afendikov and T. J. Bridges, Instability of the Hocking-Stewartson pulse and its implications for three-dimensional Poiseuille flow, Proc. R. Soc. Lond. A 457 (2001), 257-272. MR 1848089 (2002e:76024)
  • 2. J. Alexander, R. Gardner, and C. Jones, A topological invariant arising in the stability analysis of travelling waves, J. Reine Angew. Math. 410 (1990), 167-212. MR 1068805 (92d:58028)
  • 3. N. D. Aparicio, S. J. A. Malham, and M. Oliver, Numerical evaluation of the Evans function by Magnus integration, BIT 45 (2005), 219-258. MR 2176193 (2006j:65158)
  • 4. T. J. Bridges, G. Derks, and G. Gottwald, Stability and instability of solitary waves of the fifth-order KdV equation: A numerical framework, Physica D 172 (2002), 190-216. MR 1946769 (2004i:37148)
  • 5. L. Q. Brin, Numerical testing of the stability of viscous shock waves, Ph.D. thesis, Indiana University, 1998.
  • 6. -, Numerical testing of the stability of viscous shock waves, Math. of Comput. 70 (2000), no. 235, 1071-1088. MR 1710652 (2001j:65118)
  • 7. P. J. Davis and P. Rabinowitz, Numerical integration, Blaisdell, 1967. MR 0211604 (35:2482)
  • 8. I. Degani and J. Schiff, RCMS: Right correction Magnus series approach for integration of linear ordinary differential equations with highly oscillatory solution, J. Comput. Appl. Math 193 (2006), no. 2, 413-436. MR 2229552
  • 9. K. Engø, On the construction of geometric integrators in the RKMK class, BIT 40 (2000), no. 1, 41-61. MR 1759033 (2001c:65081)
  • 10. J. W. Evans, Nerve axon equations: IV The stable and unstable pulse, Indiana Univ. Math. J. 24 (1975), no. 12, 1169-1190. MR 0393891 (52:14698)
  • 11. M. Facão and D. F. Parker, Stability of screening solitons in photorefractive media, Phys. Rev. E 68 (2003), no. 1, 016610.
  • 12. R. A. Fisher, The wave of advance of advantageous genes, Ann. Eugenics 7 (1937), 353-369.
  • 13. C. González, A. Ostermann, and M. Thalhammer, A second-order Magnus integrator for non-autonomous parabolic problems, J. Comput. Appl. Math 189 (2006), 142-156. MR 2202970 (2006j:65269)
  • 14. L. Greenberg and M. Marletta, Numerical solution of non-self-adjoint Sturm-Liouville problems and related systems, SIAM J. Numer. Anal. 38 (2001), no. 6, 1800-1845. MR 1856233 (2002g:65086)
  • 15. V. Gubernov, G. N. Mercer, H. S. Sidhu, and R. O. Weber, Evans function stability of non-adiabatic combustion waves, Proc. R. Soc. Lond. A 460 (2004), no. 2048, 2415-2435. MR 2073926 (2005f:80012)
  • 16. E. Hairer and G. Wanner, Solving ordinary differential equations II. Stiff and differential-algebraic problems, second ed., Springer-Verlag, Berlin, 1996. MR 1439506 (97m:65007)
  • 17. M. Hochbruck and C. Lubich, On Magnus integrators for time-dependent Schrödinger equations, SIAM J. Numer. Anal. 41 (2003), no. 3, 945-963. MR 2005189 (2004g:65089)
  • 18. A. Iserles, A first course in the numerical analysis of differential equations, Cambridge University Press, 1996. MR 1384977 (97m:65003)
  • 19. -, On the global error of discretization methods for highly-oscillatory ordinary differential equations, BIT 42 (2002), no. 3, 561-599. MR 1931887 (2003i:65056)
  • 20. A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett, and Antonella Zanna, Lie-group methods, Acta Numerica 9 (2000), 215-365. MR 1883629 (2003a:37123)
  • 21. L. Jódar and M. Marletta, Solving ODEs arising from non-selfadjoint Hamiltonian eigenproblems, Adv. Comput. Math. 13 (2000), 231-256. MR 1772541 (2001m:65091)
  • 22. T. Kapitula and B. Sandstede, Edge bifurcations for near integrable systems via Evans function techniques, SIAM J. Math. Anal. 33 (2002), no. 5, 1117-1143. MR 1897705 (2003c:37109)
  • 23. A. Kolmogorov, I. Petrovsky, and N. Piskunov, Étude de l'équation de la diffusion avec croissance de la quantité de matiére et son application à un probléme biologique, Bull. Univ. d'État à Moscou, Série Internationale, A 1 (1937), 1-25.
  • 24. W. Magnus, On the exponential solution of differential equations for a linear operator, Comm. Pure and Appl. Math. 7 (1954), 639-673. MR 0067873 (16:790a)
  • 25. P. C. Moan, Efficient approximation of Sturm-Liouville problems using Lie-group methods, Tech. Report 1998/NA11, DAMTP, University of Cambridge, UK, 1998.
  • 26. P. C. Moan and J. Niesen, Convergence of the Magnus series, Submitted, 2006. arXiv:math/0609198
  • 27. C. Moler and C. van Loan, Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later, SIAM Review 45 (2003), no. 1, 3-49. MR 1981253 (2004d:15012)
  • 28. J. D. Murray, Mathematical biology, Springer, 1989. MR 1007836 (90g:92001)
  • 29. J. Niesen, On the global error committed when evaluating the Evans function numerically, Tech. Report HWM 06/43, Dept of Mathematics, Heriot-Watt University, 2006. arXiv:math/0611855
  • 30. R. L. Pego and M. I. Weinstein, Eigenvalues, and instabilities of solitary waves, Philos. Trans. R. Soc. Lond. A 340 (1992), no. 1, 47-94. MR 1177566 (93g:35115)
  • 31. A. Prothero and A. Robinson, On the stability and accuracy of one-step methods for solving stiff systems of ordinary differential equations, Math. of Comput. 28 (1974), 145-162. MR 0331793 (48:10125)
  • 32. J. D. Pryce, Numerical solution of Sturm-Liouville problems, Clarendon Press, Oxford, 1993. MR 1283388 (95h:65056)
  • 33. B. Sandstede, Stability of travelling waves, Handbook of Dynamical Systems II (B. Fiedler, ed.), North-Holland, 2002, pp. 983-1055. MR 1901069 (2004e:37121)
  • 34. J. Swinton and J. Elgin, Stability of travelling pulse solutions to a laser equation, Phys. Lett. A 145 (1990), no. 8-9, 428-433. MR 1052867 (91c:81190)
  • 35. D. Terman, Stability of planar wave solutions to a combustion model, SIAM J. Math. Anal. 21 (1990), no. 5, 1139-1171. MR 1062397 (91f:35138)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 65L15, 65L20, 65N25

Retrieve articles in all journals with MSC (2000): 65L15, 65L20, 65N25


Additional Information

Simon Malham
Affiliation: Department of Mathematics, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
Email: simonm@ma.hw.ac.uk

Jitse Niesen
Affiliation: Department of Mathematics, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
Address at time of publication: Mathematics Department, La Trobe University, Victoria 3086, Australia
Email: j.niesen@latrobe.edu.au

DOI: https://doi.org/10.1090/S0025-5718-07-02016-9
Keywords: Evans function, Magnus method, order reduction.
Received by editor(s): April 20, 2006
Received by editor(s) in revised form: November 15, 2006
Published electronically: July 26, 2007
Additional Notes: This work was supported by EPSRC First Grant GR/S22134/01.
Article copyright: © Copyright 2007 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society