Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Modified Taylor reproducing formulas and h-p clouds


Author: Carlos Zuppa
Journal: Math. Comp. 77 (2008), 243-264
MSC (2000): Primary 41A17, 41A10; Secondary 65N15, 65N30
DOI: https://doi.org/10.1090/S0025-5718-07-02041-8
Published electronically: July 26, 2007
MathSciNet review: 2353952
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study two different approximations of a multivariate function $ f$ by operators of the form $ \sum_{i=1}^{N}\mathcal{T}_{r}[f,x_{i}](x)\,\mathcal{W} _{i}(x)$, where $ \{\mathcal{W}_{i}\}$ is an $ m$-reproducing partition of unity and $ \mathcal{T}_{r}[f,x_{i}](x)$ are modified Taylor polynomials of degree $ r$ expanded at $ x_{i}$. The first approximation was introduced by Xuli (2003) in the univariate case and generalized for convex domains by Guessab et al. (2005). The second one was introduced by Duarte (1995) and proved in the univariate case. In this paper, we first relax the Guessab's convexity assumption and we prove Duarte's reproduction formula in the multivariate case. Then, we introduce two related reproducing quasi-interpolation operators in Sobolev spaces. A weighted error estimate and Jackson's type inequalities for h-p cloud function spaces are obtained. Last, numerical examples are analyzed to show the approximative power of the method.


References [Enhancements On Off] (What's this?)

  • 1. S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Elements Methods, Springer-Verlag, New York, 1994. MR 1278258 (95f:65001)
  • 2. C. A. M. Duarte, H-p Clouds--an h-p Meshless Method, Ph.D. Thesis, TICAM, The University of Texas at Austin, 1995.
  • 3. C. A. M. Duarte and J. T. Oden, Hp clouds--an hp meshless method to solve boundary value problems, Technical Report 59-05, TICAM, The University of Texas at Austin, 1995.
  • 4. C. A. M. Duarte and J. T. Oden, H-p Clouds--an h-p Meshless Method, Numer. Methods for Partial Diff. Eq. 12 (1996), pp. 673-705. MR 1419770 (98a:65163)
  • 5. R. G. Durán, On polynomial approximation in Sobolev spaces, SIAM J. Numer. Anal. 20 (1983), pp. 985-988. MR 714693 (85e:42010)
  • 6. T. Dupont and R. Scott, Polynomial Approximation of Functions in Sobolev Spaces, Math. of Comp. 34/150 (1980), pp. 441-463. MR 559195 (81h:65014)
  • 7. M. Griebel and M. A. Schweitzer, A particle partition of unity method, V, Boundary conditions, Geometric Analysis and Nonlinear Partial Differential Equations, S. Hildebrand and H. Karcher, eds., pp. 517-540, 2003. MR 2008354
  • 8. A. Guessab, O. Nouisser and G. Schmeisser, Multivariate approximation by a combination of modified Taylor polynomials, J. Comput. Appl. Math. 196 (2006), 162-179. MR 2241582 (2007a:41057)
  • 9. S. R. Idelsohn, E. Oñate, N. Calvo and F. Del Pin, The meshless finite element method, Int. J. Num. Meth. Engrg. 58 (2003), pp. 893-912. MR 2010710
  • 10. J. Nitsche, Über ein Variationaprinzip zur Lösing Dirichlet-Problemen bei Verwerdung von Teilräumen, die keinen Randbedingungen unterworfen sind, Abh. Math. Univ. Hamburg 36 (1970/71), pp. 9-15. MR 0341903 (49:6649)
  • 11. J. T. Oden, C. A. M. Duarte and O. C. Zienkiewicz, A new cloud-based $ hp$ finite element method, Comput. Methods Appl. Mech. Engrg. 153 (1998), pp. 117-126. MR 1606117 (99c:73081)
  • 12. T. Strouboulis, I. Babuška and K. Copps, The design and analysis of the generalized finite element method, Comput. Methods Appl. Mech. Engrg. 181 (2001), pp. 43-69. MR 1734667 (2000h:74077)
  • 13. R. Verfürth, Error estimates for some quasi-interpolation operators, RAIRO Modél. Anal. Numér. 33 (1999), pp. 695-713. MR 1726480 (2001a:65149)
  • 14. R. Verfürth, A note on polynomial approximation in Sobolev spaces, RAIRO Modél. Anal. Numér. 33 (1999), pp. 715-719. MR 1726481 (2000h:41016)
  • 15. H. Xuli, Multi-node higher order expansions of a functions, J. Approx. Theory 124 (2003), pp. 242-253. MR 2016674 (2004k:41059)
  • 16. C. Zuppa, Jackson-type inequalities for h-p clouds and error estimates, Comput. Methods Appl. Mech. Engrg. 194 (2005), pp. 1875-1887. MR 2121320 (2005j:65152)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 41A17, 41A10, 65N15, 65N30

Retrieve articles in all journals with MSC (2000): 41A17, 41A10, 65N15, 65N30


Additional Information

Carlos Zuppa
Affiliation: Departamento de Matemáticas, Universidad Nacional de San Luis, San Luis 5700, Argentina
Email: zuppa@unsl.edu.ar

DOI: https://doi.org/10.1090/S0025-5718-07-02041-8
Keywords: Reproducing formulas, \textit{h-p} clouds method, error estimates
Received by editor(s): August 9, 2005
Received by editor(s) in revised form: October 24, 2006
Published electronically: July 26, 2007
Additional Notes: Partially supported by CyT-FCFMN-UNSL Grant 22/F330. The author wishes to thank the anonymous reviewers for their valuable suggestions.
Article copyright: © Copyright 2007 American Mathematical Society

American Mathematical Society