James H. Bramble and Joseph E. Pasciak, Analysis of a finite element
PML approximation for the three dimensional time-harmonic Maxwell
problem ... 1
Vidar Thomée and Lars B. Wahlbin, On the existence of maximum
principles in parabolic finite element equations 11
Dmitriy Leykekhman, Uniform error estimates in the finite element
method for a singularly perturbed reaction-diffusion problem 21
Giancarlo Sangalli, Robust a-posteriori estimator for advection-diffusion-
reaction problems .. 41
Christoph Schwab and Rob Stevenson, Adaptive wavelet algorithms for
elliptic PDE’s on product domains .. 71
Nicolas Besse and Michel Mehrenberger, Convergence of classes of high-
order semi-Lagrangian schemes for the Vlasov–Poisson system 93
François Delarue and Stéphane Menozzi, An interpolated stochastic
algorithm for quasi-linear PDEs ... 125
Simon Malham and Jitse Niesen, Evaluating the Evans function: Order
reduction in numerical methods .. 159
Ben-Yu Guo, Zhong-Qing Wang, Hong-Jiong Tian, and Li-Lian
Wang, Integration processes of ordinary differential equations based
on Laguerre-Radau interpolations ... 181
Emmanuil H. Georgoulis, Inverse-type estimates on hp-finite element
spaces and applications ... 201
Peter Oswald, A counterexample concerning the L_2-projector onto linear
spline spaces .. 221
Rob Stevenson, The completion of locally refined simplicial partitions
created by bisection ... 227
Carlos Zuppa, Modified Taylor reproducing formulas and h-p clouds 243
Weiming Cao, An interpolation Taylor repressure estimate in R^2 based on the
anisotropic measures of higher order derivatives 265
Rong-Qing Jia and Song-Tao Liu, C^1 spline wavelets on triangulations 287
Lyonell Boulton, Peter Lancaster, and Panayiotis Psarrakos, On
peudespectra of matrix polynomials and their boundaries 313
Ren-Cang Li, On Meinardus’ examples for the conjugate gradient method 335
D. A. Bini, Y. Eidelman, L. Gemignani, and I. Gohberg, The unitary
completion and QR iterations for a class of structured matrices 353
Goetz Alefeld and Xiaojun Chen, A regularized projection method for
complementarity problems with non-Lipschitzian functions 379
Jens Keiner and Daniel Potts, Fast evaluation of quadrature formulae on the
sphere ... 397
Christine Choirat and Raffaello Seri, Statistical properties of generalized
discrepancies .. 421
Venkatesan Guruswami and Anindya C. Patthak, Correlated algebraic-
geometric codes: Improved list decoding over bounded alphabets 447
S. Gurak, Explicit values of multi-dimensional Kloosterman sums for prime powers, II ... 475
Jonathan Bayless, The Lucas-Pratt primality tree 495
M. Bauer, M. J. Jacobson, Jr., Y. Lee, and R. Scheidler, Construction of hyperelliptic function fields of high three-rank 503
Don Coppersmith, Nick Howgrave-Graham, and S. V. Nagaraj, Divisors in residue classes, constructively 531
J. M. Chick and G. H. Davies, The evaluation of κ_3 547
Jason E. Gower and Samuel S. Wagstaff, Jr., Square form factorization 551
Niels Möller, On Schönhage’s algorithm and subquadratic integer GCD computation ... 589
Reviews and Descriptions of Tables and Books 609
Amit Bhaya and Eugenius Kaszkurewicz 1
Editorial Information

Information on the backlog for this journal can be found on the AMS website starting from http://www.ams.org/mcom.

In an effort to make articles available as quickly as possible, articles are posted to the AMS website individually after proof is returned from authors and before appearing in an issue.

A Consent to Publish and Copyright Agreement is required before a paper will be published in this journal. After a paper is accepted for publication, the Providence office will send out a Consent to Publish and Copyright Agreement to all authors of the paper. By submitting a paper to this journal, authors certify that the results have not been submitted to nor are they under consideration for publication by another journal, conference proceedings, or similar publication.

Information for Authors

Initial submission. The AMS uses Centralized Manuscript Processing for initial submission. Authors should submit a PDF file using the Initial Manuscript Submission form found at www.ams.org/cgi-bin/peertrack/submission.pl, or send one copy of the manuscript to the following address: Centralized Manuscript Processing, MATHEMATICS OF COMPUTATION, 201 Charles Street, Providence, RI 02904-2294 USA. If a paper copy is being forwarded to the AMS, indicate that it is for Mathematics of Computation and include the name of the corresponding author and contact information, such as an email address or mailing address. The author may suggest an appropriate editor for his or her paper.

The first page must consist of a descriptive title, followed by an abstract that summarizes the article in language suitable for workers in the general field (algebra, analysis, etc.). The descriptive title should be short, but informative; useless or vague phrases such as “some remarks about” or “concerning” should be avoided. The abstract must be brief, reasonably self-contained, and not exceed 300 words. Included with the footnotes to the paper should be the 2000 Mathematics Subject Classification representing the primary and secondary subjects of the article. The classifications are accessible from www.ams.org/msc/. The list of classifications is also available in print starting with the 1999 annual index of Mathematical Reviews. The Mathematics Subject Classification footnote may be followed by a list of key words and phrases describing the subject matter of the article and taken from it. Journal abbreviations used in bibliographies are listed in the latest Mathematical Reviews annual index. The series abbreviations are also accessible from www.ams.org/publications/. To help in preparing and verifying references, the AMS offers MR Lookup, a Reference Tool for Linking, at www.ams.org/mrlookup/.

Electronically prepared manuscripts. For the final submission of accepted papers, the AMS encourages use of electronically prepared manuscripts, with a strong preference for \textsc{ams-latex}. To this end, the Society has prepared \textsc{ams-latex} author packages for each AMS publication. Author packages include instructions for preparing electronic manuscripts, samples, and a style file that generates the particular design specifications of that publication series. Articles properly prepared using the \textsc{ams-latex} style file and the \label and \ref commands automatically enable extensive intra-document linking to the bibliography and other elements of the article for searching electronically on the Web. Because linking must often be added manually to electronically prepared manuscripts in other forms of \textsc{tex}, using \textsc{ams-latex} also reduces the amount of technical intervention once the files are received by the AMS. This results in fewer errors in processing and saves the author proofreading time. \textsc{ams-latex} papers also move more efficiently through the production stream, helping to minimize publishing costs.

\textsc{ams-latex} is the highly preferred format of \textsc{tex}, but author packages are also available in \textsc{latex}-\textsc{tex}. Those authors who make use of these style files from the beginning of the writing process will further reduce their own efforts. Manuscripts prepared electronically in \textsc{latex} or plain \textsc{tex} are normally not acceptable due to the high amount of technical time required to insure that the file will run properly through the AMS in-house production
system. \LaTeX\ users will find that \ams-\LaTeX\ is the same as \LaTeX\ with additional commands to simplify the typesetting of mathematics, and users of plain \TeX\ should have the foundation for learning \ams-\LaTeX.

Authors may retrieve an author package from the AMS website starting from \url{www.ams.org/tex/} or via FTP to \url{ftp.ams.org} (login as \textit{anonymous}, enter username as password, and type cd pub/author-info). The \AMS\ Author Handbook and the Instruction Manual are available in PDF format following the author packages link from \url{www.ams.org/tex/}. The author package can also be obtained free of charge by sending email to \texttt{tech-support@ams.org} (Internet) or from the Publication Division, American Mathematical Society, 201 Charles Street, Providence, RI 02904-2294 USA. When requesting an author package, please specify \ams-\LaTeX\ or \ams-\TeX\ and the publication in which your paper will appear. Please be sure to include your complete email address.

\textbf{After acceptance.} The final version of the electronic manuscript should be sent to the Providence office immediately after the paper has been accepted for publication. The author should also send the final version of the paper to the Managing Editor, who will forward a copy to the Providence office. Accepted electronically prepared manuscripts can be submitted via the web at \url{www.ams.org/submit-book-journal/}, sent via email to \texttt{pub-submit@ams.org} (Internet), or sent on diskette to the Electronic Prepress Department, American Mathematical Society, 201 Charles Street, Providence, RI 02904-2294 USA. When sending a manuscript electronically via email or diskette, please be sure to include a message indicating in which publication the paper has been accepted. No corrections will be accepted electronically. Authors must mark their changes on their proof copies and return them to the Providence office. Complete instructions on how to send files are included in the author package.

\textbf{Electronic graphics.} Comprehensive instructions on preparing graphics are available starting from \url{www.ams.org/jourhtml/authors.html}. A few of the major requirements are given here.

Submit files for graphics as EPS (Encapsulated PostScript) files. This includes graphics originated via a graphics application as well as scanned photographs or other computer-generated images. If this is not possible, TIFF files are acceptable as long as they can be opened in Adobe Photoshop or Illustrator. No matter what method was used to produce the graphic, it is necessary to provide a paper copy to the AMS.

Authors using graphics packages for the creation of electronic art should also avoid the use of any lines thinner than 0.5 points in width. Many graphics packages allow the user to specify a “hairline” for a very thin line. Hairlines often look acceptable when proofed on a typical laser printer. However, when produced on a high-resolution laser imagesetter, hairlines become nearly invisible and will be lost entirely in the final printing process.

Screens should be set to values between 15\% and 85\%. Screens which fall outside of this range are too light or too dark to print correctly. Variations of screens within a graphic should be no less than 10\%.

\textbf{AMS policy on making changes to articles after posting.} Articles are posted to the AMS website individually after proof is returned from authors and before appearing in an issue. To preserve the integrity of electronically published articles, once an article is individually posted to the AMS website but not yet in an issue, changes cannot be made in place in the paper. However, an “Added after posting” section may be added to the paper right before the References when there is a critical error in the content of the paper. The “Added after posting” section gives the author an opportunity to correct this type of critical error before the article is put into an issue for printing and before it is then reposted with the issue. The “Added after posting” section remains a permanent part of the paper. The AMS does not keep author-related information, such as affiliation, current address, and email address, up to date after a paper is initially posted.

Once the article is assigned to an issue, even if the issue has not yet been posted to the AMS website, corrections may be made to the paper by submitting a traditional errata
article. The errata article will appear in a future print issue and will link back and forth on the web to the original article online.

Secure manuscript tracking on the Web. Authors can track their manuscripts through the AMS journal production process using the personal AMS ID and Article ID printed in the upper right-hand corner of the Consent to Publish form sent to each author who publishes in AMS journals. Access to the tracking system is available from www.ams.org/mstrack/. An explanation of each production step is provided on the web through links from the manuscript tracking screen. Questions can be sent to mcom-query@ams.org.

\TeX files available upon request. \TeX files are available upon request for authors by sending email to file-request@ams.org or by contacting the Electronic Prepress Department, American Mathematical Society, 201 Charles Street, Providence, RI 02904-2294 USA. The request should include the title of the paper, the name(s) of the author(s), the name of the publication in which the paper has or will appear, and the volume and issue numbers if known. The \TeX file will be sent to the author making the request after the article goes to the printer. If the requestor can receive Internet email, please include the email address to which the file should be sent. Otherwise please indicate a diskette format and postal address to which a disk should be mailed. **Note:** Because \TeX production at the AMS sometimes requires extra fonts and macros that are not yet publicly available, \TeX files cannot be guaranteed to run through the author’s version of \TeX without errors. The AMS regrets that it cannot provide support to eliminate such errors in the author’s \TeX environment.

Inquiries. Any inquiries concerning a paper that has been accepted for publication that cannot be answered via the manuscript tracking system mentioned above should be sent to mcom-query@ams.org or directly to the Electronic Prepress Department, American Mathematical Society, 201 Charles Street, Providence, RI 02904-2294 USA.

Editorial Committee

SUSANNE C. BRENNER, Center for Computation and Technology, Johnston Hall, Louisiana State University, Baton Rouge, LA 70803 USA; E-mail: brenner@math.lsu.edu

RONALD F. A. COOLS, Department of Computer Science, Katholieke Universiteit Leuven, Celestijnenlaan 200A, B-3001 Heverlee, Belgium; E-mail: ronald.cools@cs.kuleuven.ac.be

HARALD NIEDERREITER, Department of Mathematics, National University of Singapore, 2 Science Drive 2, Singapore 117543, Republic of Singapore; E-mail: nied@math.nus.edu.sg

CHI-WANG SHU, Chair. Applied Mathematics Division, Brown University, P.O. Box F, 182 George St., Providence, RI 02912-0001 USA; E-mail: mathcomp@dam.brown.edu

Board of Associate Editors

DAVID W. BOYD, Department of Mathematics, University of British Columbia, Vancouver, BC Canada V6T 1Z2; E-mail: boyd@math.ubc.ca

ZHIMING CHEN, Institute of Computational Mathematics, Chinese Academy of Sciences, P.O. Box 2719, Beijing 100080, China; E-mail: zmchen@lsec.cc.ac.cn

BERNARDO COCKBURN, School of Mathematics, University of Minnesota, 206 Church Street SE, Minneapolis, MN 55455; E-mail: cockburn@math.umn.edu

ARJEH M. COHEN, Faculteit Wiskunde en Informatica, TU Eindhoven, Postbus 513, 5600 MB Eindhoven, Netherlands; E-mail: amc@win.tue.nl

RICARDO G. DURAN, Department of Mathematics, University of Buenos Aires, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires, Argentina; E-mail: rduran@dm.uba.ar

IVAN P. GAVRILYUK, Berufsakademie Thüringen, Am Wartenberg 2, D-99817 Eisenach, Germany; E-mail: ipg@ba-eisenach.de

VIVETTE GIRAULT, Laboratoire Jacques-Louis Lions, Boîte Courrier 187, Université de Pierre et Marie Curie, 4, place Jussieu, 75252 Paris Cedex 05, France; E-mail: girault@ann.jussieu.fr
Jens Keiner and Daniel Potts, Fast evaluation of quadrature formulae on the sphere .. 397
Christine Choirat and Raffaello Seri, Statistical properties of generalized discrepancies ... 421
Venkatesan Guruswami and Anindya C. Patthak, Correlated algebraic-geometric codes: Improved list decoding over bounded alphabets 447
S. Gurak, Explicit values of multi-dimensional Kloosterman sums for prime powers, II ... 475
Jonathan Bayless, The Lucas-Pratt primality tree 495
M. Bauer, M. J. Jacobson, Jr., Y. Lee, and R. Scheidler, Construction of hyperelliptic function fields of high three-rank 503
Don Coppersmith, Nick Howgrave-Graham, and S. V. Nagaraj, Divisors in residue classes, constructively 531
J. M. Chick and G. H. Davies, The evaluation of κ_3 547
Jason E. Gower and Samuel S. Wagstaff, Jr., Square form factorization 551
Niels Möller, On Schönhage’s algorithm and subquadratic integer GCD computation ... 589
Reviews and Descriptions of Tables and Books 609
Amit Bhaya and Eugenius Kaszkurewicz 1
MATHEMATICS OF COMPUTATION

CONTENTS

Vol. 77, No. 261 January 2008

James H. Bramble and Joseph E. Pasciak, Analysis of a finite element PML approximation for the three dimensional time-harmonic Maxwell problem ... 1

Vidar Thomée and Lars B. Wahlbin, On the existence of maximum principles in parabolic finite element equations ... 11

Dmitriy Leykekhman, Uniform error estimates in the finite element method for a singularly perturbed reaction-diffusion problem 21

Giancarlo Sangalli, Robust a-posteriori estimator for advection-diffusion-reaction problems ... 41

Christoph Schwab and Rob Stevenson, Adaptive wavelet algorithms for elliptic PDE’s on product domains .. 71

Nicolas Besse and Michel Mehrenberger, Convergence of classes of high-order semi-Lagrangian schemes for the Vlasov–Poisson system 93

François Delarue and Stéphane Menozzi, An interpolated stochastic algorithm for quasi-linear PDEs .. 125

Simon Malham and Jitse Niesen, Evaluating the Evans function: Order reduction in numerical methods .. 159

Ben-Yu Guo, Zhong-Qing Wang, Hong-Jiong Tian, and Li-Lian Wang, Integration processes of ordinary differential equations based on Laguerre-Radau interpolations .. 181

Emmanuil H. Georgoulis, Inverse-type estimates on hp-finite element spaces and applications .. 201

Peter Oswald, A counterexample concerning the L_2-projector onto linear spline spaces ... 221

Rob Stevenson, The completion of locally refined simplicial partitions created by bisection ... 227

Carlos Zuppa, Modified Taylor reproducing formulas and h-p clouds 243

Weiming Cao, An interpolation error estimate in \mathcal{R}^2 based on the anisotropic measures of higher order derivatives 265

Rong-Qing Jia and Song-Tao Liu, C^1 spline wavelets on triangulations 287

Lyonell Boulton, Peter Lancaster, and Panayiotis Psarrakos, On pseudospectra of matrix polynomials and their boundaries 313

Ren-Cang Li, On Meinardus’ examples for the conjugate gradient method 335

D. A. Bini, Y. Eidelman, L. Gemignani, and I. Gohberg, The unitary completion and QR iterations for a class of structured matrices 353

Goetz Alefeld and Xiaojun Chen, A regularized projection method for complementarity problems with non-Lipschitzian functions 379

(Continued on inside back cover)