Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



$ \mathbf{Li}^{\boldsymbol{(p)}}$-service? An algorithm for computing $ \boldsymbol{p}$-adic polylogarithms

Authors: Amnon Besser and Rob de Jeu
Journal: Math. Comp. 77 (2008), 1105-1134
MSC (2000): Primary 11Y16, 11G55; Secondary 11S80
Published electronically: November 5, 2007
MathSciNet review: 2373194
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We describe an algorithm for computing Coleman's $ p$-adic polylogarithms up to a given precision.

References [Enhancements On Off] (What's this?)

  • 1. A. A. Beilinson.
    Higher regulators and values of $ {L}$-functions.
    J. Sov. Math., 30:2036-2070, 1985. MR 760999 (86h:11103)
  • 2. A. Besser.
    Syntomic regulators and $ p$-adic integration I: rigid syntomic regulators.
    Israel Journal of Math., 120:291-334, 2000. MR 1809626 (2002c:14035)
  • 3. A. Besser.
    Finite and $ p$-adic polylogarithms.
    Compositio Math., 130(2):215-223, 2002. MR 1883819 (2002m:11058)
  • 4. A. Besser, P. Buckingham, R. de Jeu, and X.-F. Roblot.
    On the $ p $-adic Beilinson conjecture for number fields.
    To appear in the special volume of the Pure and Applied Mathematics Quarterly in honour of the eightieth birthday of Jean-Pierre Serre.
  • 5. A. Besser and R. de Jeu.
    The syntomic regulator for the $ {K} $-theory of fields.
    Annales Scientifiques de l'École Normale Supérieure, 36(6):867-924, 2003. MR 2032529 (2005f:11133)
  • 6. A. Borel.
    Cohomologie de $ {\rm SL}\sb{n}$ et valeurs de fonctions zêta aux points entiers.
    Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 4(4):613-636, 1977.
    Errata in vol. 7, p. 373 (1980). MR 0506168 (58:22016)
  • 7. R. Coleman.
    Dilogarithms, regulators, and $ p$-adic $ L$-functions.
    Invent. Math., 69:171-208, 1982. MR 674400 (84a:12021)
  • 8. R. Coleman and J. Teitelbaum.
    Numerical solution of the $ p$-adic hypergeometric equation.
    In $ p$-adic monodromy and the Birch and Swinnerton-Dyer conjecture (Boston, MA, 1991), pages 53-62. Amer. Math. Soc., Providence, RI, 1994. MR 1279601 (95d:11079)
  • 9. R. de Jeu.
    Zagier's conjecture and wedge complexes in algebraic $ {K}$-theory.
    Compositio Mathematica, 96:197-247, 1995. MR 1326712 (96h:19005)
  • 10. J. Fresnel and M. van der Put.
    Rigid analytic geometry and its applications, volume 218 of Progress in Mathematics.
    Birkhäuser Boston Inc., Boston, MA, 2004. MR 2014891 (2004i:14023)
  • 11. C. Koç and T. Acar.
    Montgomery multiplication in $ {\rm GF}(2\sp k)$.
    Des. Codes Cryptogr., 14(1):57-69, 1998. MR 1608220 (99k:11189)
  • 12. P. Montgomery.
    Modular multiplication without trial division.
    Math. Comp., 44(170):519-521, 1985. MR 777282 (86e:11121)
  • 13. P. Schneider.
    Introduction to the Beilinson Conjectures.
    In Beilinson's Conjectures on Special Values of $ L$-Functions, pages 1-35. Academic Press, Boston, MA, 1988. MR 944989 (89g:11053)
  • 14. The Magma group, Sydney.
    Available from
  • 15. J. von zur Gathen and J. Gerhard.
    Modern computer algebra.
    Cambridge University Press, New York, 1999. MR 1689167 (2000j:68205)
  • 16. L. C. Washington.
    Introduction to cyclotomic fields, volume 83 of Graduate Texts in Mathematics.
    Springer-Verlag, New York, second edition, 1997. MR 1421575 (97h:11130)
  • 17. D. Zagier.
    Polylogarithms, Dedekind Zeta Functions and the Algebraic $ {K}$-theory of Fields.
    In Arithmetic algebraic geometry (Texel, 1989), pages 391-430. Birkhäuser Boston, Boston, MA, 1991. MR 1085270 (92f:11161)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 11Y16, 11G55, 11S80

Retrieve articles in all journals with MSC (2000): 11Y16, 11G55, 11S80

Additional Information

Amnon Besser
Affiliation: Department of Mathematics, Ben-Gurion University of the Negev, P.O.B. 653, Be’er-Sheva 84105, Israel

Rob de Jeu
Affiliation: Department of Mathematical Sciences, University of Durham, Science Laboratories, South Road, Durham DH1 3LE, United Kingdom
Address at time of publication: Faculteit Exacte Wetenschappen, Afdeling Wiskunde, Vrije Universiteit, De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

Keywords: Computational number theory, Coleman integration, $p$-adic polylogarithm
Received by editor(s): June 19, 2006
Received by editor(s) in revised form: December 18, 2006
Published electronically: November 5, 2007
Article copyright: © Copyright 2007 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society