MAXIMUM OF THE MODULUS OF KERNELS IN GAUSS-TURÁN QUADRATURES

GRADIMIR V. MILOVANOVIC, MIODRAG M. SPALEVIĆ, AND MIROSLAV S. PRANIĆ

ABSTRACT. We study the kernels $K_{n,s}(z)$ in the remainder terms $R_{n,s}(f)$ of the Gauss-Turán quadrature formulae for analytic functions on elliptical contours with foci at ± 1, when the weight ω is a generalized Chebyshev weight function. For the generalized Chebyshev weight of the first (third) kind, it is shown that the modulus of the kernel $|K_{n,s}(z)|$ attains its maximum on the real axis (positive real semi-axis) for each $n \geq n_0$, $n_0 = n_0(\rho, s)$. It was stated as a conjecture in [Math. Comp. 72 (2003), 1855–1872]. For the generalized Chebyshev weight of the second kind, in the case when the number of the nodes n in the corresponding Gauss-Turán quadrature formula is even, it is shown that the modulus of the kernel attains its maximum on the imaginary axis for each $n \geq n_0$, $n_0 = n_0(\rho, s)$. Numerical examples are included.

1. Introduction

We consider the Gauss-Turán quadrature formula with multiple nodes

$$
\int_{-1}^{1} f(t)\omega(t)dt = \sum_{\nu=1}^{n} \sum_{i=0}^{2s} A_{i,\nu}f^{(i)}(\tau_{\nu}) + R_{n,s}(f) \quad (n \in \mathbb{N}; \ s \in \mathbb{N}_0)
$$

where ω is a nonnegative and integrable function on the interval $(-1,1)$, which is exact for all algebraic polynomials of degree at most $2(s+1)n-1$. The nodes τ_{ν} in (1.1) must be zeros of the s-orthogonal polynomials with respect to the weight function $\omega(t)$. The s-orthogonal polynomials $\pi_n = \pi_{n,s}$ with respect to the weight function $\omega(t)$ are polynomials which satisfy the following orthogonality conditions:

$$
\int_{-1}^{1} \pi_n(t)^2 s+1 t^k \omega(t)dt = 0, \quad k = 0, 1, \ldots, n - 1.
$$

Numerically stable methods for constructing nodes τ_{ν} and coefficients $A_{i,\nu}$ can be found in [8] [10] [13]. For more details on quadrature formulae with multiple nodes see [7] and [9].

Received by the editor August 15, 2006 and, in revised form, December 4, 2006.

1991 Mathematics Subject Classification. Primary 41A55; Secondary 65D30, 65D32.

Key words and phrases. Gauss-Turán quadrature, Chebyshev weight functions, remainder term for analytic functions, error estimate, contour integral representation, confocal ellipses, kernel.

The authors were supported in part by the Swiss National Science Foundation (SCOPES Joint Research Project No. IB7320-111079 “New Methods for Quadrature”) and the Serbian Ministry of Science (Research Projects: “Approximation of linear operators” (No. #144005) & “Orthogonal systems and applications” (No. #144004C)).

©2007 American Mathematical Society
Let Γ be a simple closed curve in the complex plane surrounding the interval $[-1, 1]$ and let D be its interior. If the integrand f is analytic on D and continuous on \overline{D}, then the remainder term $R_{n,s}$ in (1.1) admits the contour integral representation (see [14, 11])

$$
R_{n,s}(f) = \frac{1}{2\pi i} \oint_{\Gamma} K_{n,s}(z)f(z)dz.
$$

The kernel is given by $K_{n,s}(z) = \rho_{n,s}(z)/[\pi_{n,s}(z)]^{2s+1}$, $z \notin [-1, 1]$, where

$$
\rho_{n,s}(z) = \int_{-1}^{1} \frac{[\pi_{n,s}(t)]^{2s+1}}{z-t} \omega(t)dt.
$$

The modulus of the kernel is symmetric with respect to the real axis, i.e., $|K_{n,s}(\overline{z})| = |K_{n,s}(z)|$. If the weight function in (1.1) is even, the modulus of the kernel is symmetric with respect to both axes, i.e., $|K_{n,s}(\overline{z})| = |K_{n,s}(z)|$ (see [11, Lemma 2.1]).

A particularly interesting case is the Chebyshev weight $\omega_1(t) = (1-t^2)^{-1/2}$. In 1930, S. Bernstein [1] showed that the monic Chebyshev polynomial $\hat{T}_n(t) = T_n(t)/2^n$—minimizes all integrals of the form

$$
\int_{-1}^{1} \frac{|\pi_n(t)|^{k+1}}{\sqrt{1-t^2}} dt \quad (k \geq 0).
$$

This means that the Chebyshev polynomials T_n are s-orthogonal on $(-1, 1)$ for each $s \geq 0$. Oscicini and Rosati [14] found three other weights $\omega_k(t)$ ($k = 2, 3, 4$) for which the s-orthogonal polynomials can be identified as Chebyshev polynomials of the second, third and fourth kind: U_n, V_n, and W_n, which are defined by

$$
U_n(\cos \theta) = \frac{\sin(n+1)\theta}{\sin \theta}, \quad V_n(\cos \theta) = \frac{\cos(n+\frac{1}{2})\theta}{\cos \frac{1}{2}\theta}, \quad W_n(\cos \theta) = \frac{\sin(n+\frac{1}{2})\theta}{\sin \frac{1}{2}\theta},
$$

respectively (cf. Gautschi and Notaris [4]). However, these weights depend on s,

$$
\omega_2(t) = (1-t^2)^{1/2+s}, \quad \omega_3(t) = \frac{(1+t)^{1/2+s}}{(1-t)^{1/2}}, \quad \omega_4(t) = \frac{(1-t)^{1/2+s}}{(1+t)^{1/2}}.
$$

It is easy to see that $W_n(-t) = (-1)^n V_n(t)$, so that in the investigation it is sufficient to study only the first three generalized Chebyshev weights $\omega_k(t)$, $k = 1, 2, 3$.

The integral representation (1.2) leads directly to the error estimate

$$
|R_{n,s}| \leq \frac{l(\Gamma)}{2\pi} \left(\max_{z \in \Gamma} |K_{n,s}(z)| \right) \left(\max_{z \in \Gamma} |f(z)| \right),
$$

where $l(\Gamma)$ denotes the length of the contour Γ. First maximum depends only on the quadrature rule (i.e., on ω) and not on f. The first unified approach described above was taken by Donaldson and Elliot [2]. They applied it to several kinds of interpolatory and non-interpolatory quadrature rules. Error bounds for Gaussian quadratures of analytic functions were studied by Gautschi and Varga [5] (see also [6]), and later by Schira [15, 16], Hunter and Nikolov [8].

As a contour Γ we take an ellipse E_ρ with foci at points ± 1 and a sum of semi-axes $\rho > 1$,

$$
E_\rho = \left\{ z \in \mathbb{C} : z = \frac{1}{2}(u + u^{-1}), \quad 0 \leq \theta \leq 2\pi \right\}, \quad u = \rho e^{i\theta}.
$$
When \(\rho \to 1 \), the ellipse shrinks to the interval \([-1, 1]\), while with increasing \(\rho \) it becomes more and more circle-like.

When \(\omega \) is the generalized Chebyshev weight of the first (third) kind, it is conjectured, on the basis of numerical experiments (see [11]), that the modulus of the kernel attains its maximum on the real axis (positive real semi-axis) for each \(n \geq n_0, \ n_0 = n_0(\rho, s) \).

In this paper we prove those conjectures. Moreover, for the generalized Chebyshev weight of the second kind, in the case when the number of the nodes \(n \) in the corresponding Gauss-Turán quadrature formula is even, we show that the modulus of the kernel attains its maximum on the imaginary axis for each \(n \geq n_0, \ n_0 = n_0(\rho, s) \). Numerical examples are included.

2. The maximum modulus of the kernel on confocal ellipses

We study the magnitude of \(|K_{n,s}(z)|\) on the contour \(\mathcal{E}_\rho \) for the generalized Chebyshev weight functions of the first, second and third kind, respectively. The particular case \(|K_{n,0}(z)|\) was analyzed in details by Gautschi et al. [5 6].

2.1. The weight function \(\omega_1(t) = (1 - t^2)^{-1/2} \). An explicit representation of the kernel \(K_{n,s}^{(1)}(z) \) on the ellipse \(\mathcal{E}_\rho \) for the weight function \(\omega_1(t) \) was given by Milovanović and Spalević in [11], as well as

\[
K_{n,s}^{(1)}(z) = \frac{2^{1-s} \pi}{\rho^n} \frac{|\rho_{n,0}(\rho e^{i\theta})|}{(a_2 - \cos 2\theta)^{1/2}(a_{2n} + \cos 2n\theta)^{1/2+s}}, \quad z \in \mathcal{E}_\rho,
\]

where

\[
a_j = a_j(\rho) = \frac{1}{2} \left(\rho^j + \rho^{-j} \right), \quad j \in \mathbb{N},
\]

and

\[
Z_{n,s}^{(1)}(u) = \sum_{k=0}^{s} \binom{2s + 1}{s + k + 1} u^{-2nk} = \sum_{k=0}^{s} \binom{2s + 1}{k} u^{-2(n-s-k)}.
\]

The weight function \(\omega_1(t) \) is even, so we can take \(\theta \in [0, \pi/2] \).

The following result was conjectured in [11]:

Theorem 2.1. For each fixed \(\rho > 1 \) and \(s \in \mathbb{N}_0 \) there exists \(n_0 = n_0(\rho, s) \) such that

\[
\max_{z \in \mathcal{E}_\rho} |K_{n,s}^{(1)}(z)| = K_{n,s}^{(1)}(\frac{1}{2}(\rho + \rho^{-1}))
\]

for each \(n \geq n_0 \).

Proof. The inequality \(|Z_{n,s}^{(1)}(\rho e^{i\theta})| \leq Z_{n,s}^{(1)}(\rho)\) immediately follows from (2.3). Because of that and (2.4), it is sufficient to prove

\[
\frac{1}{(a_2 - \cos 2\theta)^{1/2}(a_{2n} + \cos 2n\theta)^{1/2+s}} \leq \frac{1}{(a_2 - 1)^{1/2}(a_{2n} + 1)^{1/2+s}}
\]

for a sufficiently large \(n \ (n \geq n_0(\rho, s)) \) and \(\theta \in (0, \pi/2) \), where \(a_j \) are given by (2.2).

By squaring (2.4) it is reduced to

\[
(a_2 - 1)(a_{2n} + 1)^{2s+1} \leq (a_2 - \cos 2\theta)(a_{2n} + \cos 2n\theta)^{2s+1}.
\]

The following transformation will be used

\[
a_2 - \cos 2\theta = (a_2 - 1) + 2\sin^2 \theta.
\]
Further, we will use
\((a_{2n} + \cos 2n\theta)2s+1 = ((a_{2n} + 1) - 2\sin^2 n\theta)2s+1 \)
\[= (a_{2n} + 1)^{2s+1} + \sum_{k=1}^{2s+1} (-2)^k \binom{2s+1}{k} (a_{2n} + 1)^{2s+1-k} \sin^{2k} n\theta, \]
i.e.,
\[(2.7) \quad (a_{2n} + \cos 2n\theta)2s+1 = (a_{2n} + 1)^{2s+1} - 2(\sin^2 n\theta)E_{\rho,s}(n, \theta), \]
where
\[E_{\rho,s}(n, \theta) = \sum_{k=1}^{2s+1} (-2)^{k-1} \binom{2s+1}{k} (a_{2n} + 1)^{2s+1-k} \sin^{2k-2} n\theta \quad (\geq 0). \]
It is easy to see that \(E_{\rho,s}(n, \theta) \) can be represented in the form
\[E_{\rho,s}(n, \theta) = (2s+1)(a_{2n} + 1)^{2s+1} + \sum_{k=2}^{2s+1} (-2)^{k-1} \binom{2s+1}{k} (a_{2n} + 1)^{2s+1-k} \sin^{2k-2} n\theta, \]
i.e.,
\[(2.8) \quad E_{\rho,s}(n, \theta) = (2s+1)(a_{2n} + 1)^{2s+1} - \sum_{k=1}^{s} 2^{2k-1} \binom{2s+1}{2k} (a_{2n} + 1)^{2s-2k+1} \sin^{4k-2} n\theta \]
\[+ \sum_{k=1}^{s} 2^{2k} \binom{2s+1}{2k+1} (a_{2n} + 1)^{2s-2k} \sin^{4k} n\theta. \]
Using (2.6) and (2.7), the inequality (2.5) is reduced to
\[(a_{2} - 1) (a_{2n} + 1)^{2s+1} \]
\[\leq \left[(a_{2} - 1) + 2\sin^2 \theta \right] \left[(a_{2n} + 1)^{2s+1} - 2(\sin^2 n\theta)E_{\rho,s}(n, \theta) \right], \]
i.e.,
\[2\sin^2 \theta (a_{2n} + 1)^{2s+1} - 2\sin^2 n\theta \left[(a_{2} - 1) + 2\sin^2 \theta \right] E_{\rho,s}(n, \theta) \geq 0. \]
Dividing this inequality by \(2\sin^2 \theta \), it becomes
\[(a_{2n} + 1)^{2s+1} - \frac{\sin^2 n\theta}{\sin^2 \theta} \left[(a_{2} - 1) + 2\sin^2 \theta \right] E_{\rho,s}(n, \theta) \geq 0. \]
By using the well-known fact \(|\sin n\theta/\sin \theta| \leq n \), it is easy to see that
\[(2.10) \quad \frac{\sin^2 n\theta}{\sin^2 \theta} \left[(a_{2} - 1) + 2\sin^2 \theta \right] E_{\rho,s}(n, \theta) \geq 0. \]
According to (2.8), we conclude that
\[E_{\rho,s}(n, \theta) - (2s+1)(a_{2n} + 1)^{2s} = \sum_{k=1}^{s} \frac{4^k(2s+1)!}{(2k)!(2s-2k)!} (a_{2n} + 1)^{2s-2k} \]
\[\times \left(\frac{\sin^2 n\theta}{2k+1} - \frac{a_{2n} + 1}{2(2s-2k+1)} \right) \sin^{4k-2} n\theta. \]
Since \(\sin^{4k-2} n\theta \leq 1 \) and
\[\frac{\sin^2 n\theta}{2k+1} - \frac{a_{2n} + 1}{2(2s-2k+1)} \leq \frac{1}{2k+1} - \frac{a_{2n} + 1}{2(2s-2k+1)}, \]
from the previous equality we obtain
\[E_{\rho,s}(n, \theta) - (2s+1)(a_{2n+1})^{2s} \leq \sum_{k=1}^{s} 4^k (a_{2n+1})^{2s-2k} \left(\frac{2s+1}{2k+1} \right)^{2s-2k} - \frac{1}{2} \sum_{k=1}^{s} 4^k (a_{2n+1})^{2s-2k+1}. \]

Therefore,
\[E_{\rho,s}(n, \theta) \leq \sum_{k=0}^{s} 4^k \left(\frac{2s+1}{2k+1} \right) (a_{2n+1})^{2s-2k} - \frac{1}{2} \sum_{k=1}^{s} 4^k \left(\frac{2s+1}{2k} \right) (a_{2n+1})^{2s-2k+1}. \]

Using the last inequality and (2.10), we conclude that the left-hand side of (2.9) is greater than or equal to \(F(\rho,s) \), where
\[F_{\rho,s}(n) := (a_{2n+1})^{2s+1} - \left[(a_2 - 1)n^2 + 2 \right] \times \left[\sum_{k=0}^{s} 4^k \left(\frac{2s+1}{2k+1} \right) (a_{2n+1})^{2s-2k} - \frac{1}{2} \sum_{k=1}^{s} 4^k \left(\frac{2s+1}{2k} \right) (a_{2n+1})^{2s-2k+1} \right]. \]

Since \(F_{\rho,s}(n) \) (\(\rho, s \) are fixed) is continuous on \(\mathbb{R} \) and \(\lim_{n \to +\infty} F_{\rho,s}(n) = +\infty \), it follows that \(F_{\rho,s}(n) > 0 \), for each \(n > t \), where \(t \) is the largest zero of \(F_{\rho,s}(n) \). For \(n_0 \) we can take \([t] + 1 \).

Table 1. The smallest possible (s.p.) values of \(n_0 \) and their approximations \([t] + 1 \) (\(t \) is the largest zero of \(F \))

<table>
<thead>
<tr>
<th>(n)</th>
<th>([t] + 1) the s.p. (n_0)</th>
<th>([t] + 1) the s.p. (n_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>41</td>
<td>34</td>
</tr>
<tr>
<td>2</td>
<td>50</td>
<td>46</td>
</tr>
<tr>
<td>3</td>
<td>56</td>
<td>53</td>
</tr>
<tr>
<td>4</td>
<td>59</td>
<td>57</td>
</tr>
<tr>
<td>5</td>
<td>63</td>
<td>61</td>
</tr>
<tr>
<td>6</td>
<td>65</td>
<td>63</td>
</tr>
<tr>
<td>7</td>
<td>67</td>
<td>66</td>
</tr>
<tr>
<td>8</td>
<td>69</td>
<td>68</td>
</tr>
<tr>
<td>9</td>
<td>70</td>
<td>69</td>
</tr>
</tbody>
</table>

The proof of Theorem 2.1 is not only of theoretical, but also of practical importance. We can use the function \(F(n) \) from the proof to estimate \(n_0 \). Numerical values of \([t] + 1 \) (\(t \) is the largest zero of \(F \)) for some values of \(\rho \) and \(s \) are presented in Tables 1 and 2. The smallest possible (s.p.) values of \(n_0 \) are also presented. We can see that the smallest possible \(n_0 \) is estimated by \([t] + 1 \) very well.

A typical graph illustrating the relationship between \(n \) and \(F(n) \) is given in Figure 1. Here, \(\rho = 1.05, s = 1; n \in [1,42] \).

2.2. The weight function \(\omega_2(t) = (1 - t^2)^{s+1/2}, s \in N_0 \). An explicit representation of the kernel \(K_{n,s}^{(2)}(z) \) on the ellipse \(\mathcal{E}_\rho \) for the weight function \(\omega_2(t) \) was given in [11], as well as
\[|K_{n,s}^{(2)}(z)| = \frac{\pi}{4s \rho^{n+1}} \left| \frac{a_2 - \cos 2\theta}{a_{2n+2} - \cos (2n+2)\theta} \right|^{s+1/2} |Z_{n,s}^{(2)}(\rho e^{i\theta})|. \]
Table 2. The smallest possible (s.p.) values of n_0 and their approximations $|t| + 1$ (t is the largest zero of F)

<table>
<thead>
<tr>
<th>s</th>
<th>$n_0 = 1$</th>
<th>$n_0 = 5$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$s = 1$</td>
<td>$</td>
<td>t</td>
</tr>
<tr>
<td>$s = 5$</td>
<td>$</td>
<td>t</td>
</tr>
</tbody>
</table>

Figure 1. The typical graph of $F(n)$.

where

$$Z_{n,s}^{(2)}(pe^{i\theta}) = \sum_{k=0}^{s} (-1)^k \left(\frac{2s + 1}{s + k + 1} \right) (pe^{i\theta})^{-2(n+1)k}.$$

There we proved the following statement:

Theorem 2.2. If $\omega_2(t) = (1 - t^2)^{s+1/2}$ on $(-1, 1)$, $s \in \mathbb{N}_0$, and n is odd, then

$$\max_{z \in E_{\rho}} |K_{n,s}^{(2)}(z)| = \left| K_{n,s}^{(2)} \left(\frac{i}{2}(\rho - \rho^{-1}) \right) \right| .$$

In this section we consider the case when n is even.
Theorem 2.3. For each fixed $\rho > 1$ and $s \in \mathbb{N}_0$ there exists even $n_0 = n_0(\rho, s)$ such that

$$\max_{z \in \mathbb{C}_+} |K_{n,s}^{(2)}(z)| = \left| K_{n,s}^{(2)} \left(\frac{i}{2}(\rho - \rho^{-1}) \right) \right|$$

for each even $n \geq n_0$.

Proof. First we prove the inequality

$$(2.13) \quad |Z_{n,s}^{(2)}(\rho e^{i\theta})| \leq Z_{n,s}^{(2)}(i\rho), \quad \theta \in [0, \pi/2), \text{ } n \text{ is even.}$$

We note that (see [11, Eq. (3.13)])

$$Z_{n,s}^{(2)}(u) = \sum_{\nu=0}^{[(s-1)/2]} \left(\sum_{k=2\nu}^{2\nu+1} (-1)^k \frac{2s+1}{s+k+1} u^{-2(n+1)k} \right) + \zeta_{n,s}(u)$$

introducing $q = \alpha \rho^{-2(n+1)}$, now we get

$$|Z_{n,s}^{(2)}(u)| \leq \sum_{\nu=0}^{[(s-1)/2]} \left(\frac{2s+1}{s+2\nu+1} \right) \rho^{-4\nu(n+1)} \sqrt{1 - 2q \cos(2n+2)\theta + q^2} + \zeta_{n,s}(i\rho)$$

Therefore, in order to prove the statement, on the basis of (2.11) and (2.13), it is sufficient to prove

$$\frac{a_2 - \cos 2\theta}{a_{2n+2} - \cos (2n+2)\theta} \leq \frac{a_2 + 1}{a_{2n+2} + 1}, \quad \theta \in [0, \pi/2), \text{ } n \text{ is even,}$$

for sufficiently large n ($n \geq n_0$; $n_0 = n_0(\rho)$ even). This is equivalent to

$$a_{2n+2} + a_{2n+2} \cos 2\theta - a_2 - a_2 \cos (2n+2)\theta + \cos 2\theta - \cos (2n+2)\theta \geq 0,$$

and furthermore to

$$a_{2n+2}(1 + \cos 2\theta) - a_2(1 + \cos (2n+1)\theta) + (1 + \cos 2\theta) - (1 + \cos (2n+1)\theta) \geq 0,$$
introducing half-angles, to \((a_{2n+2} + 1) \cos^2 \theta - (a_2 + 1) \cos^2 (n+1) \theta \geq 0\), and to
\begin{equation}
(a_{2n+2} + 1) - \frac{\cos^2 (n+1) \theta}{\cos^2 \theta} (a_2 + 1) \geq 0.
\end{equation}

Since \(|\cos(n+1)\theta/\cos \theta| \leq n+1\) for even \(n\), we have
\begin{equation}
(a_{2n+2} + 1) - \frac{\cos^2 (n+1) \theta}{\cos^2 \theta} (a_2 + 1) \geq (a_{2n+2} + 1) - (n + 1)^2(a_2 + 1),
\end{equation}
which means that (2.14) holds if \((a_{2n+2} + 1) - (n + 1)^2(a_2 + 1) \geq 0\).

Since \(a_2 + 1 = 2a_1^2\) and \(a_{2n+2} + 1 = 2a_{n+1}^2\), the last inequality is equivalent to
\(a_{n+1}^2 - [(n + 1)a_1]^2 \geq 0\) or to \(a_{n+1} - (n + 1)a_1 \geq 0\). Substituting \(a_1, a_{n+1}\) by (2.2),
this inequality becomes
\[G_\rho(n) \equiv G(n) := \rho^{n+1} - (n + 1)\rho - (n + 1)\rho^{-1} + \rho^{-(n+1)} \geq 0.\]

Since \(G_\rho(n)\) (\(\rho\) is fixed) is continuous on \(\mathbb{R}\) and \(\lim_{n \to +\infty} G_\rho(n) = +\infty\),
it follows that \(G_\rho(n) > 0\), for each \(n > t\), where \(t\) is the largest zero of \(G_\rho(n)\). For \(n_0\)
we can take the smallest even integer which is greater than or equal to \(t\).

Let \(\overline{t}\) be the smallest even integer \(\geq t\). If \(t\) is an even integer, we have \(\overline{t} = t\),
otherwise
\[\overline{t} := \begin{cases} \lceil t \rceil + 1 & \text{if } \lceil t \rceil \text{ is odd,} \\ \lceil t \rceil + 2 & \text{if } \lceil t \rceil \text{ is even.} \end{cases} \]

We can use the function \(G(n)\) from the proof to estimate \(n_0\). Numerical values of \(\overline{t}\) for some values of \(\rho\)
are presented in Table [11]. The smallest possible (s.p.) values of \(n_0\), for \(s = 1, \ldots, 10\),
are also presented in the same table. We can see that the smallest possible \(n_0\) (which is even)
was estimated very well, independently of \(s\).

Finally, observe that the function \(G_\rho(n) \equiv G(n)\) in this case has rather simple form.
Because of \(G(0) = 0\), and \(G'(n) = 2a_{n+1} \log^2 \rho > 0\), for \(n \in [0, +\infty)\),
we conclude that \(G(n)\) has at least one zero \(t\) in the interval \((0, +\infty)\).

2.3. The weight function \(\omega_3(t) = (1 + t)^{1/2 + s}(1 - t)^{-1/2}, s \in \mathbb{N}_0\). An explicit
representation of the kernel \(K_{n,s}^{(3)}(z)\) on the ellipse \(E_\rho\) for the generalized Chebyshev
weight function of the third kind \(\omega_3(t)\) was given in [11], as well as
\begin{equation}
|K_{n,s}^{(3)}(z)| = \frac{2^{1-s} \pi}{\rho^{n+1/2}(a_2 - \cos 2\theta)^{1/2}(a_{2n+1} + \cos (2n + 1)\theta)^{1/2+s}}
\left|Z_{n,s}^{(3)}(\rho e^{i\theta})\right|.
\end{equation}

where
\[Z_{n,s}^{(3)}(u) = \sum_{k=0}^{s} \frac{2s + 1}{s + k + 1} u^{-(2n+1)k}.\]

The following result was conjectured in [11]:

Theorem 2.4. For each fixed \(\rho > 1\) and \(s \in \mathbb{N}_0\) there exists \(n_0 = n_0(\rho, s)\) such that
\[\max_{z \in E_\rho} |K_{n,s}^{(3)}(z)| = K_{n,s}^{(3)}\left(\frac{1}{2}(\rho + \rho^{-1})\right)\]
for each \(n \geq n_0\).
Table 3. The smallest possible (s.p.) values of \(n_0 \) and their approximations \(\overline{t} \) (\(t \) is the largest zero of \(G \))

<table>
<thead>
<tr>
<th>(\rho)</th>
<th>(s = 1)</th>
<th>(s = 2)</th>
<th>(s = 3)</th>
<th>(s = 4)</th>
<th>(s = 5)</th>
<th>(s = 6)</th>
<th>(s = 7)</th>
<th>(s = 8)</th>
<th>(s = 9)</th>
<th>(s = 10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.01</td>
<td>726</td>
<td>726</td>
<td>728</td>
<td>728</td>
<td>730</td>
<td>730</td>
<td>733</td>
<td>733</td>
<td>730</td>
<td>730</td>
</tr>
<tr>
<td>1.02</td>
<td>324</td>
<td>324</td>
<td>324</td>
<td>324</td>
<td>326</td>
<td>326</td>
<td>326</td>
<td>326</td>
<td>326</td>
<td>326</td>
</tr>
<tr>
<td>1.03</td>
<td>200</td>
<td>202</td>
<td>202</td>
<td>202</td>
<td>202</td>
<td>202</td>
<td>202</td>
<td>202</td>
<td>202</td>
<td>202</td>
</tr>
<tr>
<td>1.04</td>
<td>142</td>
<td>142</td>
<td>144</td>
<td>144</td>
<td>144</td>
<td>144</td>
<td>144</td>
<td>144</td>
<td>144</td>
<td>144</td>
</tr>
<tr>
<td>1.05</td>
<td>110</td>
</tr>
<tr>
<td>1.06</td>
<td>88</td>
</tr>
<tr>
<td>1.07</td>
<td>77</td>
</tr>
<tr>
<td>1.09</td>
<td>54</td>
</tr>
<tr>
<td>1.1</td>
<td>48</td>
</tr>
<tr>
<td>1.2</td>
<td>20</td>
</tr>
<tr>
<td>1.3</td>
<td>12</td>
</tr>
<tr>
<td>1.4</td>
<td>8</td>
</tr>
<tr>
<td>1.5</td>
<td>6</td>
</tr>
<tr>
<td>1.6</td>
<td>4</td>
</tr>
<tr>
<td>1.7</td>
<td>4</td>
</tr>
<tr>
<td>1.8</td>
<td>4</td>
</tr>
<tr>
<td>1.9</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>2.5</td>
<td>2</td>
</tr>
</tbody>
</table>

Proof. Because of (2.15), it is sufficient to prove

\[
\frac{(a_1 + \cos \theta)^{s+1} \left| Z_{n,s}^{(3)}(\rho e^{i\theta}) \right|}{(a_2 - \cos 2\theta)^{1/2}(a_{2n+1} + \cos (2n + 1)\theta)^{1/2+s}} \leq \frac{(a_1 + 1)^{s+1} Z_{n,s}^{(3)}(\rho)}{(a_2 - 1)^{1/2}(a_{2n+1} + 1)^{1/2+s}}
\]

for sufficiently large \(n \) (\(n \geq n_0(\rho, s) \)) and \(\theta \in (0, \pi] \), where \(a_j \) are given by (2.2).

It is obvious that for each \(n \geq 1 \), we have \((a_1 + \cos \theta)^{s+1} \leq (a_1 + 1)^{s+1} \). On the basis of the results from Subsection 2.1 we obtain

\[
\frac{Z_{n,s}^{(3)}(\rho e^{i\theta})}{(a_2 - \cos 2\theta)^{1/2}(a_{2n+1} + \cos (2n + 1)\theta)^{1/2+s}}
\]

\[
= \frac{Z_{n+1/2,s}^{(1)}(\rho e^{i\theta})}{(a_2 - \cos 2\theta)^{1/2}(a_{2n+1/2} + \cos (2n + 1/2)\theta)^{1/2+s}}
\]

\[
\leq \frac{Z_{n+1/2,s}^{(1)}(\rho)}{(a_2 - 1)^{1/2}(a_{2n+1/2} + 1)^{1/2+s}} = \frac{Z_{n,s}^{(3)}(\rho)}{(a_2 - 1)^{1/2}(a_{2n+1} + 1)^{1/2+s}}.
\]

for each \(n \geq n_0 \) (\(n_0 = n_0(\rho, s) \)). Therefore, we conclude that

\[
\left| K_{n,s}^{(3)} \left(\frac{1}{2} (\rho e^{i\theta} + \rho^{-1} e^{-i\theta}) \right) \right| \leq K_{n,s}^{(3)} \left(\frac{1}{2} (\rho + \rho^{-1}) \right),
\]

for each \(n \geq n_0 \) (\(n_0 = n_0(\rho, s) \)).

If \(t \) is the largest zero of \(F \), for \(n_0 \) we can take \([(2t - 1)/2] + 1 \). \(\square \)
ACKNOWLEDGMENT

The authors would like to thank the referee for a careful reading of the manuscript and for his valuable comments.

REFERENCES

Department of Mathematics, University of Niš, Faculty of Electronic Engineering, P.O. Box 73, 18000 Niš, Serbia
E-mail address: grade@elfak.ni.ac.yu

Department of Mathematics and Informatics, University of Kragujevac, Faculty of Science, P.O. Box 60, 34000 Kragujevac, Serbia
E-mail address: spale@kg.ac.yu

Department of Mathematics and Informatics, University of Banja Luka, Faculty of Science, M. Stojanovića 2, 51000 Banja Luka, Bosnia and Herzegovina
E-mail address: pranic77m@yahoo.com