Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



Lattice-Boltzmann type relaxation systems and high order relaxation schemes for the incompressible Navier-Stokes equations

Authors: Mapundi Banda, Axel Klar, Lorenzo Pareschi and Mohammed Seaïd
Journal: Math. Comp. 77 (2008), 943-965
MSC (2000): Primary 76P05, 76D05, 65M06, 35B25
Published electronically: December 17, 2007
MathSciNet review: 2373186
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A relaxation system based on a Lattice-Boltzmann type discrete velocity model is considered in the low Mach number limit. A third order relaxation scheme is developed working uniformly for all ranges of the mean free path and Mach number. In the incompressible Navier-Stokes limit the scheme reduces to an explicit high order finite difference scheme for the incompressible Navier-Stokes equations based on nonoscillatory upwind discretization. Numerical results and comparisons with other approaches are presented for several test cases in one and two space dimensions.

References [Enhancements On Off] (What's this?)

  • 1. Kurganov A. and D. Levy.
    A third-order semi-discrete central scheme for conservation laws and convection diffusion equations.
    SIAM J. Sci. Comp., 22:1461 - 1488, 2000. MR 1797891 (2001j:65127)
  • 2. D. Levy, G. Puppo and G. Russo.
    Central WENO schemes for hyperbolic systems of conservation laws.
    M2AN Math. Model. Numer. Anal., 33:547 - 571, 1999. MR 1713238 (2000f:65079)
  • 3. D. Levy, G. Puppo and G. Russo.
    Compact central WENO schemes for multidimensional conservation laws.
    SIAM J. Sci. Comp., 22:656 - 672, 2000. MR 1780619 (2001d:65110)
  • 4. U. Ascher, S. Ruuth, and R. Spiteri.
    Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations.
    Appl. Numer. Math., 25:151-167, 1997. MR 1485812 (98i:65054)
  • 5. C. Bardos, F. Golse, and D. Levermore.
    Fluid dynamic limits of kinetic equations: Formal derivations.
    J. Stat. Phys., 63:323-344, 1991. MR 1115587 (92d:82079)
  • 6. R. Benzi, S. Succi, and M. Vergassola.
    The Lattice-Boltzmann equation: Theory and applications.
    Physics Reports, 222:145-197, 1992.
  • 7. R.E. Caflisch, S. Jin, and G. Russo.
    Uniformly accurate schemes for hyperbolic systems with relaxation.
    SIAM J. Num. Anal., 34:246-281, 1997. MR 1445737 (98a:65112)
  • 8. N. Cao, S. Chen, S. Jin, and D. Martinez.
    Physical symmetry and lattice symmetry in Lattice Boltzmann methods.
    Phys. Rev. E, 55:21, 1997.
  • 9. H. Chen, S. Chen, and W. Matthaeus.
    Recovery of the Navier-Stokes equations using a Lattice-gas Boltzmann method.
    Physical Review A, 45:5339-5342, 1992.
  • 10. S. Chen and G.D. Doolen.
    Lattice Boltzmann method for fluid flows.
    Ann. Rev. Fluid Mech., 30:329-364, 1998. MR 1609606 (98m:76118)
  • 11. D. Aregba-Driollet, R. Natalini, and S.Q. Tang.
    Diffusive kinetic explicit schemes for nonlinear degenerate parabolic systems.
    Quaderno IAC 26, 2000.
  • 12. A. De Masi, R. Esposito, and J.L. Lebowitz.
    Incompressible Navier Stokes and Euler limits of the Boltzmann equation.
    CPAM, 42:1189, 1989. MR 1029125 (90m:35152)
  • 13. D. d'Humières.
    Generalized Lattice-Boltzmann Equations in: AIAA Rarefied Gas Dynamics: Theory and Applications.
    Progress in Astronautics and Aeoronautics, 159:450-458, 1992.
  • 14. G. Puppo F. Bianco and G. Russo.
    High order central schemes for hyperbolic system of conservation laws.
    SIAM J. Sci. Comput., 21:294-322, 1999. MR 1722134 (2000i:65118)
  • 15. F. Liotta, V. Romano, and G. Russo.
    Central schemes for balance laws of relaxation type.
    SIAM J. Numer. Anal., 38:1337-1356, 2000. MR 1790036 (2001j:65128)
  • 16. P.H. Gaskell and A.K.C. Lau.
    Curvature-compensated convective transport: Smart, a new boundedness-preserving transport algorithm.
    Int. J. Num. Meth. in Fluids, 8:617-641, 1988. MR 944575 (89c:76010)
  • 17. L. Giraud, D. d'Humieres, and P. Lallemand.
    A lattice Boltzmann model for Jeffreys viscoelastic fluid.
    Europhys. Lett., 42:625-630, 1998.
  • 18. G. Naldi, L. Pareschi, and G. Toscani.
    Relaxation schemes for PDEs and applications to second and fourth order degenerate diffusion problems.
    Surveys in Mathematics for Industry, 10:315 - 343, 2002. MR 2012453 (2004i:65087)
  • 19. X. He and L.S. Luo.
    A-priori derivation of the lattice Boltzmann equation.
    Phys. Rev. E, 55:6333-6336, 1997.
  • 20. X. He and L.S. Luo.
    Lattice Boltzmann model for the incompressible Navier-Stokes equation.
    J. Stat. Phys., 88:927-944, 1997. MR 1467637 (98g:82038)
  • 21. T. Inamuro, M. Yoshino, and F. Ogino.
    Accuracy of the lattice Boltzmann method for small Knudsen number with finite Reynolds number.
    Phys. Fluids, 9:3535-3542, 1997. MR 1478126
  • 22. G.S. Jiang and E. Tadmor.
    Non-oscillatory central schemes for multidimensional hyperbolic conservation laws.
    SIAM J. Sci. Comp., 19:1892, 1998. MR 1638064 (99f:65128)
  • 23. S. Jin and D. Levermore.
    Numerical schemes for hyperbolic conservation laws with stiff relaxation terms.
    J. Comp. Phys., 126:449, 1996. MR 1404381 (97g:65173)
  • 24. S. Jin, L. Pareschi, and G. Toscani.
    Diffusive relaxation schemes for discrete-velocity kinetic equations.
    SIAM J. Num. Anal., 35:2405-2439, 1998. MR 1655853 (99k:76100)
  • 25. S. Jin, L. Pareschi, and G. Toscani.
    Uniformly accurate diffusive relaxation schemes for multiscale transport equations.
    SIAM J. Numer. Anal., 35:2405-2439, 1999. MR 1655853 (99k:76100)
  • 26. S. Jin and Z. Xin.
    The relaxation schemes for systems of conservation laws in arbitrary space dimensions.
    Comm. Pure Appl. Math., 48:235-276, 1995. MR 1322811 (96c:65134)
  • 27. C.T. Kelley.
    Iterative methods for linear and nonlinear equations.
    SIAM, Philadelphia, 1995. MR 1344684 (96d:65002)
  • 28. A. Klar.
    An asymptotic-induced scheme for nonstationary transport equations in the diffusive limit.
    SIAM J. Num. Anal., 35:1073-1094, 1998. MR 1619859 (99d:82063)
  • 29. A. Klar.
    Relaxation schemes for a Lattice Boltzmann type discrete velocity model and numerical Navier Stokes limit.
    J. Comp. Phys., 148:1-17, 1999. MR 1669711 (99i:76122)
  • 30. R. Kupferman and E. Tadmor.
    A fast high-resolution second-order central scheme for incompresssible flows.
    Proc. Nat. Acad. Sci., 94:4848, 1997. MR 1453829 (98d:76119)
  • 31. A. Kurganov, S. Noelle, and G. Petrova.
    Semi-discrete central-upwind scheme for hyperbolic conservation laws and Hamilton-Jacobi equations.
    SIAM J. Sci. Comp., 23:707 - 740, 2001. MR 1860961 (2003a:65065)
  • 32. A.S. Almgren, J.B. Bell, and W.G. Szymczak.
    A numerical method for the incompressible Navier-Stokes equations based on approximate projection.
    SIAM J. Sci. Comp., 17:358 - 369, 1996. MR 1374285 (96j:76104)
  • 33. J.B. Bell, P. Colella, and H.M. Glaz.
    A second order projection method for the incompressible Navier-Stokes equations.
    J. Comp. Phys., 85:257 - 283, 1989. MR 1029192 (90i:76002)
  • 34. A. Kurganov and, E. Tadmor.
    New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations.
    J. Comp. Phys., 160:241-282, 2000. MR 1756766 (2001d:65135)
  • 35. L. Pareschi.
    Central differencing based numerical schemes for hyperbolic conservation laws with relaxation terms.
    SIAM J. Num. Anal., 39:1395 - 1417, 2001. MR 1870848 (2002j:65086)
  • 36. A. A. Medovikov.
    High order explicit methods for parabolic equations.
    BIT, 38:372, 1998. MR 1638136 (99i:65096)
  • 37. H. Nessyahu and E. Tadmor.
    Non-oscillatory central differencing for hyperbolic conservation laws.
    J. Comp. Phys., 87:1505, 1990. MR 1047564 (91i:65157)
  • 38. L. Pareschi and G. Russo.
    Implicit-explicit Runge-Kutta schemes for stiff systems of differential equations.
    In L. Brugnano and D. Trigiante, editors, Recent Trends in Numerical Analysis, pages 269 - 289, 2000.
  • 39. R. Peyret and T. Taylor.
    Computational Methods for Fluid Flow.
    Springer Series in Computational Fluids, Berlin, 1983. MR 681481 (84d:76004)
  • 40. Y.H. Qian, D. d'Humieres, and P. Lallemand.
    Lattice BGK models for the Navier Stokes equation.
    Europhys. Letters, 17:479-484, 1992.
  • 41. R. Sanders and A. Weiser.
    A high order staggered grid method for hyperbolic systems of conservation laws in one space dimension.
    Comp. Meth. in App. Mech. and Engrg., 75:91-107, 1989. MR 1035749 (91e:65112)
  • 42. X. Shan and X. He.
    Discretization of the Velocity Space in the Solution of the Boltzmann Equation.
    Phys. Rev. Letter, 80:65-68, 1998.
  • 43. C.W. Shu and S. Osher.
    Efficient implementation of essentially non-oscillatory shock-capturing schemes.
    J. Comp. Phys., 126:202 - 228, 1996. MR 1391627 (97e:65081)
  • 44. Y. Sone.
    Asymptotic theory of a steady flow of a rarefied gas past bodies for small Knudsen numbers.
    In R. Gatignol and Soubbaramayer, editors, Advances in Kinetic Theory and Continuum Mechanics, Proceedings of a Symposium Held in Honour of Henri Cabannes (Paris), Springer, pages 19-31, 1990.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 76P05, 76D05, 65M06, 35B25

Retrieve articles in all journals with MSC (2000): 76P05, 76D05, 65M06, 35B25

Additional Information

Mapundi Banda
Affiliation: School of Mathematical Sciences, University of KwaZulu-Natal, Private X01, 3209 Pietermaritzburg, South Africa

Axel Klar
Affiliation: Fachbereich Mathematik, TU Kaiserslautern, Erwin-Schroedinger-Str. 48, D-67663 Kaiserslautern, Germany

Lorenzo Pareschi
Affiliation: Department of Mathematics, University of Ferrara, Via Machiavelli 35, I-44100 Ferrara, Italy

Mohammed Seaïd
Affiliation: Fachbereich Mathematik, TU Kaiserslautern, Erwin-Schroedinger-Str. 48, D-67663 Kaiserslautern, Germany

Keywords: Lattice-Boltzmann method, relaxation schemes, low Mach number limit, incompressible Navier-Stokes equations, high order upwind schemes, Runge-Kutta methods, stiff equations
Received by editor(s): November 10, 2005
Received by editor(s) in revised form: January 15, 2007
Published electronically: December 17, 2007
Additional Notes: This work was supported by DFG grant KL 1105/9-1 and partially by TMR project “Asymptotic Methods in Kinetic Theory”, Contract Number ERB FMRX CT97 0157.
Article copyright: © Copyright 2007 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society