ON THE EQUATION \(s^2 + y^{2p} = \alpha^3 \)

IMIN CHEN

Abstract. We describe a criterion for showing that the equation \(s^2 + y^{2p} = \alpha^3 \) has no non-trivial proper integer solutions for specific primes \(p > 7 \). This equation is a special case of the generalized Fermat equation \(x^p + y^q + z^r = 0 \). The criterion is based on the method of Galois representations and modular forms together with an idea of Kraus for eliminating modular forms for specific \(p \) in the final stage of the method (1998). The criterion can be computationally verified for primes \(7 < p < 10^7 \) and \(p \neq 31 \).

1. Introduction

A solution \((\alpha, s, y) \in \mathbb{Z}^3 \) to the equation \(s^2 + y^{2p} = \alpha^3 \) is said to be non-trivial if \(sy \neq 0 \), and proper if \((\alpha, s, y) = 1 \). In this paper, we describe a criterion for showing that equation \(s^2 + y^{2p} = \alpha^3 \) has no non-trivial proper integer solutions for specific primes \(p > 7 \). This equation is a special case of the generalized Fermat equation \(x^p + y^q + z^r = 0 \) (cf. [5] and its references for a recent survey of this equation).

The proper solutions to the diophantine equation \(s^2 + y^{2p} = \alpha^3 \) naturally arise as certain suitably-defined integral points on a twist of the modular curve associated to the subgroup \(\Gamma_3 \) of index 2 of \(SL_2(\mathbb{Z}) \) (for a description of this viewpoint as applied to familiar cases, see [3]). This was in fact the initial motivation for considering the above diophantine equation. A uniformizer for this genus 0 modular curve is usually denoted \(\gamma_3 \) in the classical literature.

For \(p > 3 \) a prime and \(q \) a prime of the form \(np + 1 \), let \(\Omega_{p,q} \) be the subset of elements \(\zeta \in \mathbb{F}_q \) such that \(\zeta = A^p \) and \(\zeta + \frac{1}{27} = U^2 \) for some \(A \in \mathbb{F}_q^* \), \(U \in \mathbb{F}_q^* \). For \(\zeta \in \Omega_{p,q} \), let \(E_{\zeta} \) denote the isomorphism class of the elliptic curve over \(\mathbb{F}_q \) given by \(Y^2 = X^3 + 2UX^2 + \frac{1}{27}X \) where \(\zeta + \frac{1}{27} = U^2 \) (note the choices of \(U \) give rise to elliptic curves which are twists of each other). Let \(E_0 \) denote an elliptic curve over \(\mathbb{Q} \) of conductor 96.

Theorem 1. Let \(p > 7 \) be a prime. Suppose there exists a prime \(q \) of the form \(np + 1 \) such that \(a_q(E_0)^2 \neq 4 \) (mod \(p \)) and for all \(\zeta \in \Omega_{p,q} \) we have \(a_q(E_{\zeta})^2 \neq a_q(E_0)^2 \) (mod \(p \)). Then there are no triples \((\alpha, s, y) \in \mathbb{Z}^3 \) satisfying \(s^2 + y^{2p} = \alpha^3 \) with \((\alpha, s, y) = 1 \) and \(sy \neq 0 \).

Corollary 2. Let \(7 < p < 10^7 \) and \(p \neq 31 \) be a prime. Then there are no triples \((\alpha, s, y) \in \mathbb{Z}^3 \) satisfying \(s^2 + y^{2p} = \alpha^3 \) with \((\alpha, s, y) = 1 \) and \(sy \neq 0 \).
Corollary 3. Let \(p > 7 \) be a prime such that \(q = 2p + 1 \) is prime. If \(\left(\frac{q}{13} \right) = 1 \) and \(\left(\frac{a}{13} \right) = (-1)^{\frac{a-1}{2}} \), then there are no triples \((a, s, y)\) \in \mathbb{Z}^3\) satisfying \(s^2 + y^2p = \alpha^3 \) with \((a, s, y) = 1\) and \(sy \neq 0 \).

For instance, the hypotheses of Corollary 3 are satisfied for
\[
p = 100000000000000014611, \quad q = 200000000000000029223.
\]
Based on the conjectures described in [6], the conclusion of the above theorem should hold if \(p > 3 \).

2. Proof of Theorem 1

We first recall the parametrization of solutions to the equation \(s^2 + t^2 = \alpha^3 \).

Lemma 4. A triple \((\alpha, s, t)\) \in \mathbb{Z}^3\) with \((\alpha, s, t) = 1\) satisfies \(s^2 + t^2 = \alpha^3 \) only if \((\alpha, s, t) = (u^2 + v^2, u(u^2 - 3v^2), v(3u^2 - v^2))\) for some \((u, v)\) \in \mathbb{Z}^2\).

Proof. Cf. Lemma 3.2.2 in [3].

Lemma 5. Let \(p \) be an odd prime. Suppose \((u, v)\) \in \mathbb{Z}^2\) gives rise to a triple \((\alpha, s, t) = (u^2 + v^2, u(u^2 - 3v^2), v(3u^2 - v^2))\) satisfying \((\alpha, s, t) = 1\) and \(st \neq 0 \). Then the constraint that \(t = y^p \) for some \(y \in \mathbb{Z} \) implies either

\[
\begin{align*}
(1) & \quad v = r^p \text{ and } 3u^2 - v^2 = a^p \text{ for some } a, r \text{ with } 3 \nmid a, r \text{ and } a, r, u \text{ are non-zero pairwise coprime}, \\
(2) & \quad v = 3^{p-1}r^p \text{ and } 3u^2 - v^2 = 3a^p \text{ for some } a, r \in \mathbb{Z} \text{ and positive } j \in \mathbb{Z}, \text{ where } 3 \nmid a, r, u \text{ and } a, r, u \text{ are non-zero pairwise coprime}.
\end{align*}
\]

Proof. Since \((\alpha, s, y) = 1\), it is necessary that \((u, v) = 1\). If \(d \mid v \) and \(d \mid 3u^2 - v^2 \), then \(d \mid 3u^2 \). Since \((u, v) = 1\), we have that \(d \mid 3 \). Hence, \((v, 3u^2 - v^2) \mid 3 \).

If \(3 \nmid v \), then \(v, 3u^2 - v^2 = 1 \). The condition that \(t = v(3u^2 - v^2) = y^p \) for some \(y \in \mathbb{Z} \) implies by unique factorization that \(v = r^p \) and \(3u^2 - v^2 = a^p \) for coprime \(a, r, u \in \mathbb{Z} \). It now follows that \(3 \nmid a, r \) and \(a, r, u \) are pairwise coprime.

If \(3 \mid v \), then \(v, 3u^2 - v^2 = 3 \). The condition that \(t = v(3u^2 - v^2) = y^p \) for some \(y \in \mathbb{Z} \) implies by unique factorization that \(v = 3^p r^p \) and \(3u^2 - v^2 = 3^n a^p \) for coprime \(a, r, m \in \mathbb{Z}, \text{ where } 3 \nmid a, r \), and positive \(n \in \mathbb{Z} \). It is now easily checked that \(3 \nmid u, m = 1 \), \(n = pj - 1 \) for some positive \(j \in \mathbb{Z} \), and \(a, r, u \) are pairwise coprime.

Corollary 6. Let \(p \) be an odd prime. Suppose \((u, v)\) \in \mathbb{Z}^2\) gives rise to a triple \((\alpha, s, t) = (u^2 + v^2, u(u^2 - 3v^2), v(3u^2 - v^2))\) satisfying \((\alpha, s, t) = 1\) and \(st \neq 0 \). Then the constraint that \(t = y^p \) for some \(y \in \mathbb{Z} \) implies there are non-zero pairwise coprime \(a, r, u \in \mathbb{Z} \) and positive \(j \in \mathbb{Z} \) satisfying either

\[
\begin{align*}
(1) & \quad a^p + (r^2)^p = 3u^2 \text{ with } 3 \nmid a, r, \\
(2) & \quad a^p + 3^{p-1}r^p = u^2 \text{ with } 3 \nmid a, u.
\end{align*}
\]

Theorem 7. Let \(p > 3 \) be a prime. Suppose \((a, r, u)\) \in \mathbb{Z}^3\) satisfies \(a^p + (r^2)^p = 3u^2 \) with \(a, r, u \) pairwise coprime and \(3 \nmid a, r \). Then \(aru = 0 \).

Proof. This is a special case of Theorem 1.1 in [1].

For non-zero \(a, d \in \mathbb{Z} \), let \(\text{Rad}_d(a) \) be the product of primes dividing \(a \) but not \(d \).
Proposition 8. Let $p > 3$ be a prime. Suppose $(a, r, u) \in \mathbb{Z}^3$ satisfies $a^p + 3^{2^{p-3}}(r^2)^p = u^2$ with a, r, u non-zero pairwise coprime, $3 \nmid a, u$, and positive $j \in \mathbb{Z}$. Associate to (a, r, u) the elliptic curve E over \mathbb{Q} given by

1. $Y^2 = X^3 + 2uX^2 + 3^{2^{p-3}}r^2X$ if ar is odd,
2. $Y^2 + XY = X^3 + \frac{\pm u-1}{4}X^2 + \frac{2^{2^{p-3}}(r^2)^p}{64}X$ if ar is even,

where the sign in $\pm u$ is chosen so that $\pm u \equiv 1 \pmod{4}$. Then the conductor N of E and the Artin conductor M of $\rho_{E,p}$ are given in each case by

1. $N = 96 \cdot \text{Rad}_q(ab)$ and $M = 96$,
2. $N = 6 \cdot \text{Rad}_q(ab)$ and $M = 6$.

Furthermore, the representation $\rho_{E,p}$ is flat at p.

Proof: This follows from Lemma 2.1 of [1].

The above proposition allows us to invoke the machinery of galois representations and modular forms to establish Theorem 1.

Proof of Theorem 1. Suppose $(a, s, y) \in \mathbb{Z}^3$ satisfies $s^2 + y^2p = a^2$ with $(s, t, \alpha) = 1$ and $sy \neq 0$. By Corollary 6 we obtain non-zero pairwise coprime $a, r, u \in \mathbb{Z}$ satisfying $a^p + (r^2)^p = 3u^2$ with $3 \nmid a, r$, or non-zero pairwise coprime $a, r, u \in \mathbb{Z}$ and positive $j \in \mathbb{Z}$ satisfying $a^p + 3^{2^{p-3}}(r^2)^p = u^2$ with $3 \nmid a, u$. In the former case, Theorem 7 allows us to deduce that $aru = 0$, a contradiction. In the latter case, let E be the elliptic curve over \mathbb{Q} associated to (a, r, u) by Proposition 8. Since E is modular [2], it follows that $\rho_{E,p}$ is modular.

The elliptic curve E has one odd prime of multiplicative reduction, namely $q = 3$. By Corollary 4.4 in [3], E having at least one prime odd prime q of multiplicative reduction and $\rho_{E,p}$ reducible implies that $p = 2, 3, 5, 7, 13$. If $p = 13$ however, then E would give rise to a non-cuspidal rational point on $X_0(26)$ as E also has a rational point of order 2, contradicting [10]. Since $p > 7$ we may assume now that $\rho_{E,p}$ is irreducible. Since $\rho_{E,p}$ has Artin conductor $M = 6$ or $M = 96$ and is flat at p, it follows by level lowering [11] that $\rho_{E,p} \cong \rho_{g,p}$ where g is a weight 2 newform on $\Gamma_0(M)$. There are no weight 2 newforms on $\Gamma_0(6)$, so we are left with the case that $M = 96$.

There are two possibilities for g corresponding to the isogeny classes labelled as 96A, 96B respectively in Cremona’s tables [4]. Let E_0 be the elliptic over \mathbb{Q} corresponding to g.

If q is a prime and $q \neq 2, 3, p$, then the fact that $\rho_{E,p} \cong \rho_{E_0,p}$ implies $p \mid a_q(E_0)^2 - a_q(E_0)$ if E has good reduction at q and $p \mid a_q(E_0)^2 - (q+1)^2$ if E has multiplicative bad reduction at q. If E_0 does not have a rational point of order 2, then it is possible to find a prime q (independently of the exponent p and the solution (a, r, u)) so that $a_q(E_0)$ is odd. On the other hand, $a_q(E)$ is even so that $a_q(E) - a_q(E_0)$ is non-zero. The quantity $a_q(E_0)^2 - (q+1)^2$ is non-zero by Hasse’s bounds. Hence, we obtain a bound on p. This method to bound p is used in the proof of Theorem 7 [12].

Unfortunately, all elliptic curves over \mathbb{Q} of conductor 96 have a rational point of order 2. Thus, it is not possible to use the above method to bound p. However, in this situation, the method in [7] can be used to obtain a contradiction for specific p.

The method works as follows. Recall we are in the situation where we have obtained non-zero pairwise coprime $a, r, u \in \mathbb{Z}$ and positive $j \in \mathbb{Z}$ satisfying $a^p + 3^{2^{p-3}}(r^2)^p = u^2$ with $3 \nmid a, u$, and this solution gave rise to the elliptic curve E over
\[\mathbb{Q} \text{ given by } Y^2 = X^3 + 2uX^2 + 3^{3p-3}r^{-2p}X. \] For a fixed exponent \(p \), we search for \(q = np + 1 \) prime such that \(a_q(E_0)^2 \equiv 4 \pmod{p} \) and \(a_q(E_\zeta)^2 \not\equiv a_q(E_0)^2 \pmod{p} \) for all \(\zeta \in \Omega_{p,q}. \)

The existence of such a prime \(q \) for the given \(p \) now yields a contradiction as follows. If \(E \) were to have multiplicative reduction modulo \(q \), then we would have that \(a_q(E_0)^2 \equiv (q+1)^2 \equiv 4 \pmod{p} \), a contradiction. Hence, \(E \) has good reduction modulo \(q \). By Lemma 2.1 in [1], the discriminant of \(E \) is equal to \(a^3r^4p \) up to factors of 2 and 3. Hence, both \(a, r \) are non-zero modulo \(q \). If we let \(A = \frac{-a}{r} \) and \(U = \frac{-U}{r} \), then \(\zeta + \frac{1}{2}U = U^2 \) where \(\zeta = A^2 \). The elliptic curve \(E \) is isomorphic to \(Y^2 = X^3 + 2UX^2 + \frac{1}{2}X \) over \(\mathbb{Q}(\sqrt{3p^3r^2}) \) which also has good reduction modulo \(q \).

Hence, the reduction modulo \(q \) of \(E \) is isomorphic to a twist of \(E_\zeta \) where \(\zeta \in \Omega_{p,q} \) is the reduction modulo \(q \) of \(\zeta \). Now, \(a_q(E)^2 = a_q(E_\zeta)^2 \). But then we would have that \(p \mid a_q(E)^2 - a_q(E_\zeta)^2 = a_q(E_\zeta - a_q(E_0)^2 \), a contradiction.

Notice that the elliptic curves 96A and 96B are twists of each other and that the criterion above only depends on \(E_0 \) up to twist.

Although it is possible to treat the diophantine equation \(s^2 + y^{2p} = a^3 \) using the elliptic curves classified by the modular curve associated to \(\Gamma_3 \) directly, many of the arguments are essentially equivalent to the work incorporated into the proof of Theorem 1.1 of [1].

Proof of Corollary 2. We were able to computationally verify the criterion of Theorem 1 for \(7 < p < 10^7 \) and \(p \neq 31 \) using MAGMA.

Curiously, it is sometimes the case that \(\Omega_{p,q} \) is empty for specific \(p, q \) (e.g. \(p = 11, q = 23 \)). When this is the case, this last portion of the argument becomes completely elementary (but note the overall argument still requires [1]).

For example, suppose \(p > 3 \) and \(n = 2 \) so \(q = 2p+1 \) is prime. The set \(\Omega_{p,q} \) is not empty if and only if \(\pm 27 + 1 = 3x^2 \) for some \(x \in \mathbb{F}_q^\times \), in other words if and only if \((\frac{26}{q}) = (\frac{3}{q}) \) or \((\frac{-26}{q}) = (\frac{3}{q}) \). Using quadratic reciprocity, we find that the set \(\Omega_{p,q} \) is empty if and only if \((\frac{3}{q}) = 1 \) and \((\frac{q}{13}) = (-1)\frac{q+1}{12} \). This proves Corollary 3.

Algorithm 1: Verifying the criterion in Theorem 1 for specific primes \(p, q \)

- **input**: primes \(p, q \) such that \(p > 7 \) and \(q = np + 1 \)
- **output**: true if criterion of Theorem 1 is satisfied for \(p, q \); false otherwise
- if \(a_q(E_0)^2 \equiv 4 \pmod{p} \) then
 - return false;
- end
- forall \(\zeta \in \mu_n(\mathbb{F}_q^\times) \) do
 - if \(\zeta + \frac{1}{2}U = U^2 \) and \(p \mid a_q(E_\zeta)^2 - a_q(E_0)^2 \) then
 - return false
 - end
- end
- return true;
ON THE EQUATION $s^2 + y^p = \alpha^3$

Acknowledgements

I would like to thank M. Bennett and N. Bruin for useful discussions. I would also like to thank the referee for suggestions which simplified the criterion and improved its computational efficiency.

References

Department of Mathematics, Simon Fraser University, Burnaby, B.C., Canada V5A 1S6 E-mail address: ichen@math.sfu.ca