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POWER SERIES FOR INVERSE JACOBIAN
ELLIPTIC FUNCTIONS

B. C. CARLSON

ABSTRACT. The 12 inverse Jacobian elliptic functions are expanded in power
series by using properties of the symmetric elliptic integral of the first kind.
Suitable notation allows three series to include all 12 cases, three of which have
been given previously. All coefficients are polynomials in the modulus k that
are homogeneous variants of Legendre polynomials. The four series in each of
three subsets have the same coefficients in terms of k.

1. INTRODUCTION

Only partial information about power series for inverse Jacobian elliptic functions
seems to be available if we ask for series in which all coefficients are algebraic
functions of the modulus k. If 2 = sn(u, k), the inverse function is u = arcsn(z, k),
which was expanded in power series by Kelisky [Kél, (4)]:

B=S ke, (L (es 1)) 2 k
(1.1) arcsn(z, )—Z n<2< +kj>)2n—|—l’ |z <1, 0<k<1,

n=0

where P, is the Legendre polynomial of degree n. Equation (9) in the same paper
gives a similar series for arcsc(z, k). Lomont and Brillhart [LB| p. 112] cite Kelisky’s
paper and verify (1.1). [Wo| shows a series for each of the three functions arcsp(z, k),
p = ¢, d, or n, with coefficients containing a o F; polynomial. I have not seen series
of the kind specified above for the remaining nine inverse functions. Tolke [Toll
(884), (886), (888)] gives the first four terms for each of the six functions included
in arcsp and arcps, and three terms (but see the Remarks at the end of this paper)
for each of the six functions included in arcqp, where q,p € {c,d,n}, q # p. The
last two references do not mention Legendre polynomials.

This paper uses known connections between the symmetric elliptic integral Rp
and the inverse Jacobian functions to derive their infinite power series with “homo-
geneous Legendre polynomials” as coefficients. We shall show that the coefficients
for arcsp, arcps, and two cases of arcqp are the same for a given choice of p = ¢, d,
or n. For example, if p = n, this is true for arcsn, arcns, arccn, and arcdn.
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2. DERIVATION OF SERIES

The symmetric incomplete elliptic integral of the first kind, defined by
3

1 (o)
(2.1) Rp(wy,wq,ws) = 3 /0 H(t + wj)_1/2dt, Iph(w;)| < m,
j=1

is symmetric and homogeneous of degree —1/2 in the w’s. With {p,q,r} = {c,d,n}
the 12 inverse Jacobian elliptic functions are related to Rr by

(2.2) aresp(z, k) = zRp(1 + A(q, p)zg, 14+ Afr, p)z2, 1),
(2.3) arcps(z, k) = 2 'Rp(1 + A(q, p)z*2, 1+ Alr, p)z’Q, 1),
2 2 122\
arcqp(z, k) = ERp(2°,1 + Alr, , 1), :(7>
ap(z, k) = ERp( (r,p)€, 1), €& X
(2.4) = ERp(14 A(q,p)&%, 1+ A(r,p)€2, 1),
where
(2.5) A(p,q) = ps*(u, k) — qs*(u, k) = —=A(q, p)
and therefore
(2.6) Ald,c)=k?=1-k A(n,d) =k* A(nc)=1.

In (2.2)-(2.4) the third variable of Rp was chosen to be 1 to match (2.16) below.
With the help of homogeneity and symmetry, (2.2), (2.3), and (2.4) are easily
verified by putting z = sp(u, k), z = ps(u, k), and z = qp(u, k), respectively, to
recover in each case the fundamental relation u = Rp(ps?(u, k), qs?(u, k), 18%(u, k))
[cdnl (1.8)]. Remark 1 at the end of this section may be helpful in the case of (2.4).

Theorem 1. Define

(2.7) Ro(2,y) = Ru(3, 35 2,y) =Z%x@”%

where (3)o =1, (3)m =335 (m—1), m=1,2,3,.... With {p,q,r} = {c,d,n},

(2.8) aresp(z, k) = Rn(A(p,q), A(p,1))

e »)2n+1
(2.9) arcps(z, k) = Z R, (A(p,q), A(p, r))L,

P 2n+1
- o g2nt1 [ 1- 22\ /2
(2.10) arcpq(z, k) = ;Rn(A(p,Q), A(p, r))2n R £= Alp,q) )

where all variables may be real or complex. Sufficient conditions for absolute con-
vergence of the series (2.8), (2.9), and (2.10) are given by (2.11), (2.12), and
(2.13), respectively:

(2.11) max{|A(p, @), |A(p, )]} |27 < 1,
(2.12) max{|A(p, @), [Ap. )]} < |2,
(2.13) max{|A(p, a)], [A(p, 1)} [¢]* < 1.
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For a proof of the stronger statement that each inequality involves the radius of
convergence of the corresponding series, see Remark 2 at the end of this section.

Proof. Since the multivariate hypergeometric R-function [Cal §5.9] includes Ry as
the special case [Cal, (9.2-1)]

(2.14) Rp(wi,wa,w3) = R_12(5, 5, 43 wi,wa,w3), [ph(w;)| <,

we can find series expansions of (2.2)-(2.4) from a special case of [Cal, (5.9-4)],
o (3)n

(2.15) RF(l—’Ul,l—’Ug,l—Ug)_Z 2' Rn(% % % 1,’1}2,’03), |’Uj‘ <1,

=0
where the polynomial R,, [Cal §6.2] is symmetric and homogeneous of degree n in
6.2

ss
the v’s. Putting v3 = 0 and using [Cal (6.2-6)] with ¢, = 2 and cp= %, we have
(2.16) Rp(1—wvi,1—wva,1 Z 2n+ 1 Ru(3,3; v1,v2),  |ui],|va| <1,

and (3.9) below shows that the series converges absolutely. In (2.15) and (2.16) the
v’s lie in the open unit disk with center 0 in the complex plane. The explicit form
of R,, with two variables is a special case of [Cal (6.2-3)] and is reproduced in (2.7)
with the parameters %,% suppressed on the left side for brevity. The relation of
(2.7) to the Legendre polynomial P, will be discussed in §3.

Applying (2.16) to the right side of (2.2)-(2.4), we find

=1
(2.17) arcsp(z,k) = = Z i Rn(A(pvq)Z2? A(p, r)z2)a
n=0

(2.18) arcps(z, k) = z7* Z ! Rn(A(p, @)z~ %, A(p,1)272),

— 2n+1

1—22 12
2.19 k) 2 A 2 = —= .
(2.19) arcqp(z, 62 5 +1 (A(p,a)&%, A(p,1)€%), € (A(p,q))
According to (2.16) these series converge absolutely if each variable of R,, lies inside
the open unit disk, as (2.11)-(2.13) indeed require. Equations (2.8)-(2.10) follow
from (2.17)-(2.19) by the homogeneity of R,,. O

Because {p,q,r} = {c,d,n} the choice of p determines q and r except for their
order. For R, (A(p,q), A(p,r)), which is symmetric in its two variables, the order of
q and r is immaterial, and the coefficients in (2.8)-(2.10) depend only on the choice
of p = ¢, d, or n. For each choice there are four inverse functions with the same
coefficients: one case of arcsp, one case of arcps, and two cases of arcqp (because q
appears also in &).

First choosing p=n, we find from (2.6) that the variables of R,, are 1 and k2.
Then (2.8) becomes

2n+1

2n+1’

(2.20) arcsn(z, k) ZR (1 k2)
n=0

max{1, |k*|}]2)? < 1.

Using (2.9) and (2.10) we immediately find the series for arcns, arccn, and arcdn

1/2
by replacing z on the right-hand side of (2.20) by 1/z, (1 — 22)'/2, and ( = ) ,

respectively.
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Choosing p=d, we find similarly that (2.8) becomes

2n+1
2 ;2 20 (1.2 2
(2.21) arcsd(z, k) ng OR (1—-k°, -k )2 1 max{|1 — k|, |k*|} |z|* < 1.

The series for arcds, arccd, and arcnd are found by replacing z on the right-hand
1/2 1/2
side of (2.21) by 1/z, (1 s , and i}l) , respectively.
Finally, choosing p=c, we find that (2.8) becomes

2n+1

(2.22)  arcsc(z, k) ZR 1,-1)2——, max{|1 -k, 1} |2 < L

2n+1’
The series for arccs, arcdc and arcnc are found by replacing z on the right-hand

1/2
side of (2.22) by 1/z, (1 kQ) , and (22 — 1)1/2, respectively.

Remark 1. To understand why the coefficients in (2.8) and (2.9) are the same, note
that u = arcps(z, k) implies z = ps(u, k), 1/2z = sp(u, k), and u = arcsp(1/z, k).
Hence arcps(z, k) = arcsp(1/z,k). A similar argument applies to (2.8) and (2.10)
because

Lo’ 1 (as/ps)’

A(p,q)  ps?—as®

Thus the quantity with exponent 2n+1 in (2.8), (2.9), or (2.10) is in each case sp,
which is 0 at v = 0, as is the sum u of each series.

= 1/ps? = sp®.

Remark 2. The right-hand sides of (2.2)-(2.4) have a common form
(2.23) wRp(1 —wv1,1 —w9,1), |ph(l—vj)| <,

where w = 2,271, ¢ in (2.2), (2.3), (2.4), respectively, and v; = A(p,q)w?, vy =
A(p,r)w?. The condition for (2.23), taken from (2.1), states that 1 — v; lies in the
complex plane cut along the nonpositive real axis, and hence v; lies in the complex
plane cut along the positive real axis from 1 to co. In the w?-plane this entails
a cut rotated away from the positive real axis so that it extends with constant
phase from 1/A(p,q) to oo and a similar cut from 1/A(p,r) to oo. Except on
these cuts, (2.23) is analytic in w?. In particular it is analytic inside the circle
with center w? = 0 that passes through the nearer of the two points 1/A(p,q) and
1/A(p,r), one or both of which may be complex (see (2.6)). That circle is the circle
of convergence of the power series (2.8)-(2.10) in w? obtained from (2.17)-(2.19) by
using the homogeneity of R,,. The radius of the circle is the radius of convergence

@2 p=min{|Y/ AR AP =

Thus the inequalities (2.11)-(2.13), previously described as sufficient, are now seen
to be the best possible since they require only that |w?| be less than p.

3. HOMOGENEOUS LEGENDRE POLYNOMIALS

The polynomials R,, have a generating relation that is a special case of [Cal
(6.6-1)]:

(31)  (A—t(z+y)+2xy) V2 =1 —ta) V21 —ty)" V2 = Zt”R (z,y).
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In terms of the arithmetic and geometric means
T+y

(3.2) a="1 4=y,

—1/2

the generating function is (1 — 2at + v2t?) , and by putting t = s/v we get

a —1/2 00 5"
(3.3) (1—2—8—1—82) = Z—Rn(x7y).

gl =g
Comparison with [Cal (6.7-3)] shows that R, is related to the Legendre polynomial
P, by

(3.4) Rp(2,y) =7"Pn (:)

and reduces to P,(«a) if zy = 1. This close relationship suggests thinking of R,
as a homogeneous Legendre polynomial in the variables o and v (see (3.5) be-
low). An example of (3.4) is seen in arcsn, where (2.8) contains the coefficient
R, (A(n,c),A(n,d)) = R,(1,k%). Then a = (1 + k?)/2, v = k, and the right-hand

side of (3.4) is k" P, (%), the coefficient in (1.1). (Incidentally, in [Ke, (2)] a

function R, () is defined that can be shown to be R, (1,2?) in the notation used
here.)

Why, then, use R, instead of P, in Theorem 17 If z and y are real with opposite
signs, all quantities in (2.7) are real, but v and the variable of P,, are pure imaginary.
This unnecessary complication occurs, for example, in arcsd if 0 < k? < 1; it is
dealt with in [Kél (5),(6)] by introducing a second polynomial S,, that differs from
P, by changing minus signs to plus signs. The polynomial R, (z,y) suffices for both
signs of xy, and its symmetry was important in showing that the four series in each
of three subsets have the same coefficients.

To evaluate R,, as a polynomial in « and y, we can use (2.7), but if the coefficients
Cnj in Pp(a) = Zg /0] Cnja" %I are at hand, we can use (3.4) to find a more concise
expression as a homogeneous Legendre polynomial h,(«,7) such that h,(a,1) =
P, (a):

[n/2]
(3.5) R, (z,y) = Zc QT2

Thus we have

Ro(z,y) = ho(e,7) =1,
Ri(2,y) = hi(a,7) = a = 3(z +y),
(3.6)  Ro(z,y) = ho(a,7) = 3(3a® —9?) = : (322 4 2zy + 39°),
Rs(z,y) = hs(a,y) = %(5@3 —3a79?) = 1—16 (523 4 322y + 3y + 5y%),
Ry(z,y) = hy(a,y) = %(35014 300292 + 3+%)

< (352" 4 202y + 182y + 20zy® + 35y*).

M|H

A recurrence relation that is a spe(nal case of [Cal (5.9-25)] may be more useful for
automatic computation,

(3.7) (n+ Dhper = 2n+ Dah, —ny* hp_1,
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showing by induction that h,, is divisible by « for odd n.
Note the special cases

(.

(3.8) R, (z,0) = ] ,

R, (x,x) =a".

The first equation is obvious from (2.7). The second follows from the nature of
R,, as a Dirichlet average of 2™ [Cal (6.1-1)] or alternatively from a special case of
Vandermonde’s theorem [Cal (2.3-1)], which also serves to establish the bound

(3.9) | R, )| < [max{]z], [y|}]".

This bound provides an elementary route to (2.11)-(2.13) instead of using the con-
vergence condition for [Cal (5.9-4)].

The two parts of (3.8) serve to check the reductions of (2.20)-(2.22) to power
series for inverse circular functions if £ = 0 or inverse hyperbolic functions if £ =1
[AS] 16.6, 4.4, 4.6].

4. LEADING TERMS

The coefficients for the leading terms of (2.20)-(2.22) can be shown as explicit
polynomials in k? by using (3.6) or (3.7):

arcsn(z, k) =z + +(1 + k?)23 + 53+ 2k% + 3k*) 25

(4.1) + 15 (5 + 3k* + 3k* +5k6)z7+

) arcsd(z, k) = z + 2(1 — 2k%)2% + L (3 — 8k + 8k4)
%(5 — 18Kk% + 24k4 16k5)27 + .

(4.3) arcsc(z, k) = z + 2(k* — 2)2° + & (3k* — 8k” + 8)

+ m(5/&6 — 18k* 4 24k* —16)2" + ... .

Corresponding terms for the other nine functions are obtained by replacing z as
prescribed after each of (2.20)-(2.22).

Remarks. Recurrence relations equivalent to the special case of (3.7) with a =
(1+&2%)/2 and v = k were used by [Wi}, (1.4), Table I} and [LB] (8.4), Table 8.1] to
list R, (k%,1) for 0 <n < 7and 0 <n <9, respectively. [LB] shows the connection
with arcsn and the divisibility mentioned after (3.7).

The leading terms given by [Tol, (888)] for the six cases of arcqp were mentioned
in the Introduction. They involve powers of (1 —z)'/? (in present notation) instead
of (1—2%)Y/2. They are obtained from the leading terms of 1 — z = 1 — qp(u, k) as
power series in u? [Tol, (816)-(818)]. Reversion of series to get the leading terms
of u? as power series in 1 — z is followed by taking the square root to get leading
terms of u = arcqp(z, k) as series of odd powers of (1 — 2)!/2. Each of these two
operations would make it increasingly difficult to get higher terms of the final series
even if higher terms of the initial series for 1 — z were readily available.

The equations for arcen given by [Kel (6)] and [Wo] follow from the power series
for arcsd and the relation arcen(z, k) = K (k) — arcsd(z/k") |Lal (3.2.18)].
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