Skip to Main Content

Mathematics of Computation

Published by the American Mathematical Society since 1960 (published as Mathematical Tables and other Aids to Computation 1943-1959), Mathematics of Computation is devoted to research articles of the highest quality in computational mathematics.

ISSN 1088-6842 (online) ISSN 0025-5718 (print)

The 2020 MCQ for Mathematics of Computation is 1.78.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Primitive central idempotents of finite group rings of symmetric groups
HTML articles powered by AMS MathViewer

by Harald Meyer PDF
Math. Comp. 77 (2008), 1801-1821 Request permission

Abstract:

Let $p$ be a prime. We denote by $S_n$ the symmetric group of degree $n$, by $A_n$ the alternating group of degree $n$ and by ${\mathbb F}_p$ the field with $p$ elements. An important concept of modular representation theory of a finite group $G$ is the notion of a block. The blocks are in one-to-one correspondence with block idempotents, which are the primitive central idempotents of the group ring ${\mathbb F}_q G$, where $q$ is a prime power. Here, we describe a new method to compute the primitive central idempotents of ${\mathbb F}_q G$ for arbitrary prime powers $q$ and arbitrary finite groups $G$. For the group rings ${\mathbb F}_p S_n$ of the symmetric group, we show how to derive the primitive central idempotents of ${\mathbb F}_p S_{n-p}$ from the idempotents of ${\mathbb F}_p S_n$. Improving the theorem of Osima for symmetric groups we exhibit a new subalgebra of ${\mathbb F}_p S_n$ which contains the primitive central idempotents. The described results are most efficient for $p = 2$. In an appendix we display all primitive central idempotents of ${\mathbb F}_2 S_n$ and ${\mathbb F}_4 A_n$ for $n \le 50$ which we computed by this method.
References
  • Charles W. Curtis and Irving Reiner, Representation theory of finite groups and associative algebras, Pure and Applied Mathematics, Vol. XI, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0144979
  • The GAP Group, GAP — Groups, Algorithms, and Programming, Version 4.4; 2005. (http://www.gap-system.org)
  • R. Gow, Real $2$-blocks of $S_n,A_n$ and their double covers, The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986) Proc. Sympos. Pure Math., vol. 47, Amer. Math. Soc., Providence, RI, 1987, pp. 421–429. MR 933379
  • Bertram Huppert, Character theory of finite groups, De Gruyter Expositions in Mathematics, vol. 25, Walter de Gruyter & Co., Berlin, 1998. MR 1645304, DOI 10.1515/9783110809237
  • B. Huppert, Endliche Gruppen. I, Die Grundlehren der mathematischen Wissenschaften, Band 134, Springer-Verlag, Berlin-New York, 1967 (German). MR 0224703
  • Bertram Huppert and Norman Blackburn, Finite groups. II, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 242, Springer-Verlag, Berlin-New York, 1982. AMD, 44. MR 650245
  • Gordon James and Adalbert Kerber, The representation theory of the symmetric group, Encyclopedia of Mathematics and its Applications, vol. 16, Addison-Wesley Publishing Co., Reading, Mass., 1981. With a foreword by P. M. Cohn; With an introduction by Gilbert de B. Robinson. MR 644144
  • Gregory Karpilovsky, Structure of blocks of group algebras, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 33, Longman Scientific & Technical, Harlow; John Wiley & Sons, Inc., New York, 1987. MR 914150
  • Adalbert Kerber, Representations of permutation groups. I, Lecture Notes in Mathematics, Vol. 240, Springer-Verlag, Berlin-New York, 1971. MR 0325752
  • Adalbert Kerber, Axel Kohnert, and Alain Lascoux, SYMMETRICA, an object oriented computer-algebra system for the symmetric group, J. Symbolic Comput. 14 (1992), no. 2-3, 195–203. MR 1187231, DOI 10.1016/0747-7171(92)90035-3
  • Burkhard Külshammer, Group-theoretical descriptions of ring-theoretical invariants of group algebras, Representation theory of finite groups and finite-dimensional algebras (Bielefeld, 1991) Progr. Math., vol. 95, Birkhäuser, Basel, 1991, pp. 425–442. MR 1112173, DOI 10.1007/978-3-0348-8658-1_{1}9
  • Harald Meyer, Konjugationsklassensummen in endlichen Gruppenringen, Bayreuth. Math. Schr. 66 (2002), viii+160 (German). Dissertation, Universität Bayreuth, Bayreuth, 2002. MR 1953638
  • Harald Meyer, Finite splitting fields of normal subgroups, Arch. Math. (Basel) 83 (2004), no. 2, 97–101. MR 2104936, DOI 10.1007/s00013-004-1066-3
  • John Murray, Squares in the centre of the group algebra of a symmetric group, Bull. London Math. Soc. 34 (2002), no. 2, 155–164. MR 1874081, DOI 10.1112/S0024609301008591
  • G. Navarro, Characters and blocks of finite groups, London Mathematical Society Lecture Note Series, vol. 250, Cambridge University Press, Cambridge, 1998. MR 1632299, DOI 10.1017/CBO9780511526015
  • Jørn B. Olsson, Lower defect groups in symmetric groups, J. Algebra 104 (1986), no. 1, 37–56. MR 865885, DOI 10.1016/0021-8693(86)90232-2
  • Michio Suzuki, Gun ron. Vol. 1, Gendai Sūgaku [Modern Mathematics], vol. 18, Iwanami Shoten, Tokyo, 1977 (Japanese). MR 514842
Similar Articles
  • Retrieve articles in Mathematics of Computation with MSC (2000): 20C05, 20C30, 20C40
  • Retrieve articles in all journals with MSC (2000): 20C05, 20C30, 20C40
Additional Information
  • Harald Meyer
  • Affiliation: Mathematisches Institut, Universität Bayreuth, 95440 Bayreuth, Germany
  • Email: harald.meyer@uni-bayreuth.de
  • Received by editor(s): December 15, 2006
  • Received by editor(s) in revised form: March 8, 2007
  • Published electronically: December 17, 2007
  • © Copyright 2007 American Mathematical Society
    The copyright for this article reverts to public domain 28 years after publication.
  • Journal: Math. Comp. 77 (2008), 1801-1821
  • MSC (2000): Primary 20C05, 20C30, 20C40
  • DOI: https://doi.org/10.1090/S0025-5718-07-02058-3
  • MathSciNet review: 2398795