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THE HYPERDETERMINANT AND TRIANGULATIONS
OF THE 4-CUBE

PETER HUGGINS, BERND STURMFELS, JOSEPHINE YU, AND DEBBIE S. YUSTER

Abstract. The hyperdeterminant of format 2 × 2 × 2 × 2 is a polynomial
of degree 24 in 16 unknowns which has 2894276 terms. We compute the
Newton polytope of this polynomial and the secondary polytope of the 4-cube.
The 87959448 regular triangulations of the 4-cube are classified into 25448 D-
equivalence classes, one for each vertex of the Newton polytope. The 4-cube
has 80876 coarsest regular subdivisions, one for each facet of the secondary
polytope, but only 268 of them come from the hyperdeterminant.

1. Introduction

The hyperdeterminant is a fundamental object of multilinear algebra. We recall
its definition from the book by Gel′fand, Kapranov, and Zelevinsky [12], which is
our basic reference. Given an n-linear form with unknown coefficients,

F (x) =
r1∑

i1=1

r2∑
i2=1

· · ·
rn∑

in=1

ci1i2···in
· x(1)

i1
x

(2)
i2

· · ·x(n)
in

,

one considers the set of all tensors (ci1i2···in
) in Cr1 ⊗ Cr2 ⊗ · · · ⊗ Crn such that

the system of (n−1)-linear equations obtained by taking partial derivatives,

∂F

∂x
(j)
k

(x) = 0 for j = 1, 2 . . . , n and k = 1, . . . , rj ,

has a non-trivial solution (x(1), x(2), . . . , x(n)). Here non-trivial means that x(i) is a
non-zero vector in C

ri . This set is an irreducible algebraic variety in C
r1⊗· · ·⊗C

rn .
For many values of r1, r2, . . . , rn, this variety has codimension one, so it is the zero
set of a unique (up to sign) irreducible polynomial in the unknowns ci1i2···in

. That
unique polynomial is the hyperdeterminant Dr1r2···rn

.
Hyperdeterminants have numerous applications ranging from quantum informa-

tion theory [14, 15] to computational biology [1, 21] and numerical analysis [7, 22].
Of particular interest is the binary case, when r1 = r2 = · · · = rn = 2. The first
instance (n = 2) is the familiar determinant of a 2 × 2-matrix:

D22 = c00c11 − c01c10.
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Next, the hyperdeterminant of a 2 × 2 × 2-tensor is the following irreducible poly-
nomial in 8 unknowns which is the sum of 12 terms of degree four:

D222 = 4c000c011c101c110 + 4c001c010c100c111

+c2
000c

2
111 + c2

001c
2
110 + c2

010c
2
101 + c2

011c
2
100

−2c000c001c110c111 − 2c000c010c101c111 − 2c000c011c100c111

−2c001c010c101c110 − 2c001c011c110c100 − 2c010c011c101c100.

This hyperdeterminant is also known as the tangle in the physics literature.
The present paper is concerned with the case n = 4, the next instance af-

ter the tangle. We resolve the following challenge problem which was stated by
I. M. Gel′fand in his fall 2005 research seminar at Rutgers University: find the
monomial expansion of the hyperdeterminant D2222 of a 2 × 2 × 2 × 2-tensor.

Back in 1852, Schläfli had given a nested formula [12, §14.4] for D2222, which
is a polynomial of degree 24 in 16 unknowns c0000, c0001, . . . , c1111, and, 150 years
later, Luque and Thibon [15] expressed D2222 in terms of the fundamental tensor
invariants. Gel′fand’s challenge to the computer algebra community was to expand
these formulas into monomials. We obtained the following result:

Theorem 1. The hyperdeterminant D2222 is the sum of 2894276 monomials in
9617 orbits. The Newton polytope of D2222 is an 11-dimensional polytope with 268
facets in 8 orbits and 25448 vertices in 111 orbits. It contains the exponent vectors
of 20992 monomials in 69 orbits which do not appear in D2222.

In this theorem, the term orbits refers to the full symmetry group B4 of the
4-dimensional cube, which has order 384, and the Newton polytope is the convex
hull in R16 of the exponent vectors of all monomials appearing in D2222.

Our computational proof of Theorem 1 is explained in Sections 3 and 4. We
list representatives for each orbit of facets, vertices, and “missing monomials,” and
we discuss key properties found in these data. Complete data are available at our
supplementary materials website bio.math.berkeley.edu/4cube/.

Gel′fand, Kapranov, and Zelevinsky [12, §11] found a beautiful and deep rela-
tionship between the monomials in the 2 × 2 × · · · × 2-hyperdeterminant and the
triangulations of the n-dimensional cube. In the language of polyhedral geometry,
this relationship can be stated as follows: the secondary polytope of the n-cube
equals the Minkowski sum of the Newton polytopes of the hyperdeterminants cor-
responding to all the faces of the n-cube, up to dimension n. Readers unfamiliar
with these geometric concepts will find an elementary and self-contained introduc-
tion in Section 2, where we explain the correspondence between the monomials in
D222 and the triangulations of the 3-cube.

Theorem 1 opened up the possibility of determining the same correspondence
for the 4-cube. However, we found the computational challenges to be formidable,
in light of the size of the secondary polytope of the 4-cube:

Theorem 2. The 4-cube has 87959448 regular triangulations in 235277 orbits. The
secondary polytope of the 4-cube has 80876 facets in 334 orbits.

The first statement in Theorem 2 is a known result due to Pfeifle and Rambau
[16], who had computed all regular triangulations of the 4-cube using Rambau’s
software TOPCOM [17]. We independently verified their enumeration. The second
statement in Theorem 2 is one of the contributions of this paper.
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Equipped with Theorems 1 and 2, it took us two more months of serious com-
putational work to obtain what we consider to be the main mathematical result
of this paper: the extension of the material in Section 2 from dimension three to
dimension four. Each regular triangulation of the 4-cube maps to a monomial in
D2222, and the fibers of this map are the D-equivalence classes of [12]. We found
that, up to symmetry, there are 111 D-equivalence classes. They are discussed in
Section 6. Section 7 studies the 80876 facets in Theorem 2, and it classifies the
coarsest regular polyhedral subdivisions of the 4-cube. Most of the algorithms and
software we developed and used here can easily be generalized and applied to other
polynomials and polytopes with symmetry.

Section 5 places our computations into a larger mathematical context. The
hyperdeterminant D2222 is the A-discriminant for the matrix of the 4-cube

A =

⎡
⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

⎤
⎥⎥⎥⎥⎦ .

Dickenstein, Feichtner, and Sturmfels [8] recently gave a recipe for computing the
Newton polytope of the A-discriminant for any point configuration A. Our compu-
tations are complementary to their tropical approach. We represent subdivisions
of the cube A by their dual polyhedral complexes, here called tight spans as in [13].
The related cases when A is a second hypersimplex or a product of two simplices
correspond to finite metrics [20] and to tropical convexity [9], respectively. We also
study the irreducible factorizations of all leading forms of D2222 that are supported
on facets of the Newton polytope.

Summarizing our discussion in this introduction, we wish to highlight the fol-
lowing three contributions to the mathematics of computation made here:

• solution to a computational challenge problem posed by I.M. Gel′fand,
• new theorems in algebra (hyperdeterminant) and geometry (4-cube),
• new computational methodology (algorithms and software) for large poly-

nomials and large convex polytopes in the presence of symmetry.

2. The secondary polytope of the 3-cube

As a warm-up for our study of the 4-cube, we first discuss our primary objects
of interest for the 3-cube. Recall that the Newton polytope N (G) of a polynomial
G is the convex hull of the exponent vectors of the monomials which appear in the
expansion of G. The Newton polytope N (D222) of the hyperdeterminant D222 is
the convex hull in R8 of the six rows of the matrix

⎛
⎜⎜⎜⎜⎜⎜⎝

x000 x001 x010 x011 x100 x101 x110 x111

c000c011c101c110 1 0 0 1 0 1 1 0
c001c010c100c111 0 1 1 0 1 0 0 1
c2
000c

2
111 2 0 0 0 0 0 0 2

c2
001c

2
110 0 2 0 0 0 0 2 0

c2
010c

2
101 0 0 2 0 0 2 0 0

c2
011c

2
100 0 0 0 2 2 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

These six monomials labeling the rows are the extreme monomials of D222, which
means that their exponent vectors are vertices of the Newton polytope N (D222).
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The other six monomials in D222 are not extreme monomials, since their exponent
vectors lie in the relative interiors of edges of the 4-dimensional polytope N (D222).
Combinatorially, N (D222) is a bipyramid over a tetrahedron. Its f-vector records
the number of faces of dimensions 0, 1, 2, and 3, respectively:

(1) f
(
N (D222)) = (6, 14, 16, 8).

The Newton polytope of the 2× 2× 2-hyperdeterminant has the following irredun-
dant presentation by linear equations and inequalities:

N (D222) = {(x000, x001, . . . , x111) ∈ R8 :
x000, x001, x010, x011, x100, x101, x110, x111 ≥ 0,

x000 + x001 + x010 + x011 = x000 + x001 + x100 + x101 = 2,

x000 + x010 + x100 + x110 = x001 + x011 + x101 + x111 = 2 }.

In Section 4, we determine the analogous presentation for N (D2222).
We consider the principal determinant of the 3-cube. By [12, Thm. 10.B.1.2],

this is the following product of determinants associated to faces and vertices:

E222 = D222 · (c000c011 − c001c010) · (c000c101 − c001c100)
·(c000c110 − c010c100) · (c001c111 − c011c101)
·(c010c111 − c011c110) · (c100c111 − c101c110)
·c000 · c001 · c010 · c011 · c100 · c101 · c110 · c111.

The expansion of this polynomial of degree 24 has 231 monomials, of which 74 are
extreme monomials. The symmetry group of the 3-cube, which is the Weyl group
B3 of order 48, acts on these 231 monomials. The 74 extreme monomials come in
six orbits:

Type Monomial GKZ Vector Orbit Size
1 −4c000c

5
001c

5
010c011c

5
100c101c110c

5
111 (1 5 5 1 5 1 1 5) 2

2 −c000c
4
001c

4
010c

3
011c

6
100c101c110c

4
111 (1 4 4 3 6 1 1 4) 8

3 c000c
3
001c

4
010c

4
011c

6
100c

2
101c110c

3
111 (1 3 4 4 6 2 1 3) 24

4 c000c
3
001c

3
010c

5
011c

5
100c

3
101c

3
110c111 (1 3 3 5 5 3 3 1) 12

5 −c000c
3
001c

3
010c

5
011c

6
100c

2
101c

2
110c

2
111 (1 3 3 5 6 2 2 2) 24

6 c2
000c

2
001c

2
010c

6
011c

6
100c

2
101c

2
110c

2
111 (2 2 2 6 6 2 2 2) 4

The Newton polytope N (E222) of the principal determinant E222 is the secondary
polytope of the 3-cube. It is 4-dimensional and has the f -vector (74, 152, 100, 22).
A Schlegel diagram of this polytope was posted by Julian Pfeifle at

www.eg-models.de/models/Discrete_Mathematics/
Polytopes/Secondary_Polytopes/2000.09.031/.

Using POLYMAKE [11], we found that the secondary polytope of the 3-cube has
the following irredundant presentation by linear equations and inequalities:

(2)

N (E222) =
{
(x000, x001, . . . , x111) ∈ R8 :

x000 + x001 + x010 + x011 = x000 + x001 + x100 + x101 = 12,
x000 + x010 + x100 + x110 = x001 + x011 + x101 + x111 = 12,

1 ≤ x000, x001, x010, x011, x100, x101, x110, x111 ≤ 6,
x000 + x001 ≥ 4, x000 + x010 ≥ 4, x000 + x100 ≥ 4,
x001 + x011 ≥ 4, x010 + x011 ≥ 4, x001 + x101 ≥ 4

}
.
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According to the theory of Gel′fand, Kapranov, and Zelevinsky [12], the 74
vertices of the secondary polytope N (E222) are in bjiection with the regular trian-
gulations of the 3-cube. For the 3-cube all triangulations are regular, so the 3-cube
has 74 triangulations which come in 6 orbits. The vertex of N (E222) corresponding
to a given triangulation Π is called the GKZ vector of Π. The ith coordinate of
the GKZ vector of Π is the sum of the normalized volumes of all tetrahedra in Π
which contain the ith vertex of the cube. For a general introduction to triangula-
tions, their GKZ vectors, and secondary polytopes, see the forthcoming book by
De Loera, Rambau, and Santos [10]. The 6 types of triangulations of the 3-cube
are depicted in [10, Figure 1.38] and [6, Figure 3]. Their tight spans, which are
polyhedral complexes dual to the triangulations, are shown in Figure 1. Here is a
detailed description:

Type 1. These 2 triangulations divide the cube into five tetrahedra. There is
one central tetrahedron of normalized volume two and four unimodular tetrahedra
which border the central tetrahedron.

The remaining five types of triangulations divide the 3-cube into six unimodular
tetrahedra. Each of these triangulations uses a diagonal of the cube.

Type 2. We get these 8 triangulations by slicing off the three vertices adjacent to
a fixed vertex. The remaining bipyramid is cut into three tetrahedra.

Type 3. These 24 triangulations also use a diagonal. Of the other six vertices we
pick two that are diagonal on a facet, and we slice them off.

Type 4. These 12 triangulations are indexed by ordered pairs of diagonals. The
end points of the first diagonal are sliced off, and the remaining octahedron is
triangulated using the second diagonal.

Type 5. These 24 triangulations are indexed by a diagonal and one other vertex.
That vertex is sliced off, and the remaining polytope is divided into a pentagonal
ring of tetrahedra around the diagonal.

Type 6. These four triangulations are indexed by the diagonals. The cube is
divided into a hexagonal ring of tetrahedra around the diagonal.

We depict each triangulation of the 3-cube by its corresponding tight span, which
is the planar graph dual to the triangulation. Each vertex of the tight span cor-
responds to a tetrahedron in the triangulation, and two vertices are connected by
an edge if the corresponding tetrahedra share a triangle. Regions of the tight span
correspond to interior edges of the triangulation. The six types of tight spans are
shown in Figure 1. Compare it to Figure 2 in [18].

The 22 facets of N (E222) correspond to proper subdivisions of the 3-cube which
are as coarse as possible. The eight facet inequalities like x000 ≥ 1 correspond to
slicing off one vertex. The eight inequalities like x000 ≤ 6 correspond to subdividing
the 3-cube into three pyramids whose bases are the square facets disjoint from one
vertex. The six inequalities like x000 + x001 ≥ 4 correspond to subdividing the
3-cube into two triangular prisms.

Since the hyperdeterminant D222 is a factor of the principal determinant E222,
its Newton polytope N (D222) is a Minkowski summand of the secondary polytope
N (E222). This implies the existence of a natural map from the 74 vertices of
N (E222) onto the six vertices of N (D222). Equivalently, we have a map from the
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2 triangs.

8 triangs.

24 triangs. 12 triangs. 24 triangs. 4 triangs.

Figure 1. The tight spans dual to the six types of triangulations
of the 3-cube. Each tight span represents an orbit of extreme
monomials of the principal determinant E222.

regular triangulations of the 3-cube to the extreme monomials of D222. A formula
for this map can be derived from Theorem 3.2 in [12, §11.A].

The extreme monomials of D222 come in two B3-orbits. We now describe the
corresponding two orbits of D-equivalence classes. Each class consists of all triangu-
lations which are mapped to a fixed extreme monomial of D222. The D-equivalence
class of the monomial c001c010c100c111 consists of only one triangulation, namely
the triangulation of type 1 with GKZ vector (1, 5, 5, 1, 5, 1, 1, 5). The D-equivalence
class of c2

000c
2
111 consists of all 18 triangulations which use the diagonal from (0, 0, 0)

to (1, 1, 1). Thus the number of triangulations of the 3-cube decomposes as follows
into the sizes of the D-equivalence classes:

(3) 74 = 2 · 1 + 4 · 18 = 1 + 1 + 18 + 18 + 18 + 18.

We emphasize that all of these results on the 3-cube are easy and well-known.
This section served a purely expository purpose, namely, to set the stage for the
new results on the 4-cube to be presented in the later sections. For instance, Table
5 generalizes the identity (3) from the 3-cube to the 4-cube.

3. Schläfli’s formula and its expansion

We now consider a multilinear polynomial in four variables x, y, z, and w,
F = c0000 + c0001w + c0010z + c0011zw + c0100y + c0101yw

+ c0110yz + c0111yzw + c1000x + c1001xw + c1010xz

+ c1011xzw + c1100xy + c1101xyw + c1110xyz + c1111xyzw,

where the 16 coefficients cijkl are regarded as unknowns.
Slightly rephrasing the definition given in the Introduction, the hyperdeterminant

D2222 is the unique irreducible polynomial (up to sign) of content one in the 16
unknowns cijkl that vanishes whenever the system of equations

(4) F =
∂F

∂x
=

∂F

∂y
=

∂F

∂z
=

∂F

∂w
= 0

has a solution (x0, y0, z0, w0) in C
4.

In theory, we can compute D2222 by eliminating the four variables x, y, z, w from
the five equations (4), say by using Gröbner bases or resultants [5], but in practice
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this is infeasible. The analogous computation for a multilinear polynomial in three
variables, however, is easy to do, and it yields the expression for D222 stated in the
Introduction.

Schläfli’s formula for D2222 is obtained as follows. We replace each of the eight
unknowns cijk in the 2 × 2 × 2-hyperdeterminant D222 by cijk0 + cijk1w. The
resulting expression is a polynomial of degree 4 in the variable w. Its coefficients
are polynomials of degree 4 in the cijkl. The discriminant of this polynomial with
respect to the variable w is an expression of degree 24 in the cijkl. This expression
is Schläfli’s formula for the hyperdeterminant D2222.

Proposition 3. The hyperdeterminant D2222 coincides with the discriminant of
D222(cijk0 + cijk1w), considered as a polynomial in w, divided by 256.

This proposition is a special case of [12, Theorem 14.4.1]. Its proof is based on
the fact that both polynomials have degree 24, which we know for D2222 by [12,
Corollary 14.2.10]. For tensors of larger format (e.g., 2×2×2×2×2) the same
recursive method does not work so well. In general, Schläfli’s formula yields the
desired hyperdeterminant times a large extraneous factor.

The first assertion in Theorem 1 was proved by expanding Schläfli’s formula, as
follows. Using MAPLE, we expressed D222(cijk0 + cijk1w) as

D222(cijk0 + cijk1w) = b4w
4 + b3w

3 + b2w
2 + b1w + b0

where each bi is a degree 4 polynomial in the 16 unknowns cijkl. These expressions
for the bi in terms of the cijkl were then substituted into the discriminant

256b3
0b

3
4 − 192b2

0b1b3b
2
4 − 128b2

0b
2
2b

2
4 + 144b2

0b2b
2
3b4 − 27b2

0b
4
3

+ 144b0b
2
1b2b

2
4 − 6b0b

2
1b

2
3b4 − 80b0b1b

2
2b3b4 + 18b0b1b2b

3
3 + 16b0b

4
2b4

− 4b0b
3
2b

2
3 − 27b4

1b
2
4 + 18b3

1b2b3b4 − 4b3
1b

3
3 − 4b2

1b
3
2b4 + b2

1b
2
2b

2
3.

(5)

After substituting, MAPLE was unable to expand and combine the discriminant’s
16 products due to memory constraints. Instead, we used MAPLE to substitute and
expand each of the 16 products (such as b2

1b
2
2b

2
3 ) separately. We then wrote a C++

program to merge the 16 expansions and divide all coefficients by 256. The result
of this merge was a lexicographically sorted list of 2894276 monomials of degree
24 in the 16 unknowns cijkl, each with its integer coefficient. The largest absolute
value of any coefficient is 112464.

The symmetry group of the 4-cube is the Weyl group B4 of order 384. It acts
on the set of monomials in D2222 giving 9617 orbits. At our website, the 9617
lexicographically smallest monomials in each orbit are listed in lexicographic order.
Each monomial is listed on a separate row, in the format

[[ExponentVector], Coefficient, FaceDimension, OrbitSize].

Here FaceDimension is the dimension of the smallest face of N (D2222) containing
the exponent vector. For example, the 192 monomials in the orbit of

−2 · c2
0011c

2
0101c

3
0110c

5
0111c

7
1000c1001c1010c1011c1100c1101

are represented by the row [[0, 0, 0, 2, 0, 2, 3, 5, 7, 1, 1, 1, 1, 1, 0, 0],−2, 3, 192]. The
distribution of the 9617 orbits according to orbit size is as follows:

2 8 12 16 24 32 48 64 96 192 384
2 6 6 16 27 24 142 90 577 2743 5984
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The two orbits of size two are represented by the monomial

2008 · c3
0001c

3
0010c

3
0100c

3
0111c

3
1000c

3
1011c

3
1101c

3
1110,

whose exponent vector lies on a 3-dimensional face, and the monomial

112464 · c0000c
2
0001c

2
0010c0011c

2
0100c0101c0110c

2
0111

· c2
1000c1001c1010c

2
1011c1100c

2
1101c

2
1110c1111,

which has the largest coefficient and whose exponent vector lies in the relative
interior of N (D2222). The largest odd coefficient appears in the monomial

−5811 · c0001c0010c
4
0011c

2
0100c0101c

2
0110c0111c

2
1000c

2
1001c

2
1010c

2
1100c

2
1101c1110c1111

with orbit size 384, whose exponent vector lies in the relative interior of a 9-face.
The distribution of the 9617 orbits according to face dimension is as follows:

0 1 2 3 4 5 6 7 8 9 10 11
111 230 269 540 1145 1862 2138 1845 976 405 70 26

The computation of the above face dimensions and the computation in the rest
of this section were all performed after we computed the facet representation of
the Newton polytope N (D2222). In the next section, we present all eight classes of
facet inequalities and explain how we obtained them.

In the remainder of this section we discuss the 20992 monomials whose exponent
vectors lie in the Newton polytope N (D2222) but which have coefficient zero in the
expansion of hyperdeterminant D2222. They come in 69 B4-orbits. In the following
table we list one representative from each orbit:

0002114445101010 0002114454011010 0002114454100110 0002114463010110
0002115345101001 0002115354011001 0002115354100101 0002115363010101
0002122571111001 0002126126200110 0002136025300101 0002144114501100
0002216126110110 0002223353200002 0002226026200002 0002314235200002
0002411450141100 0003113444102010 0003114344012010 0003114353012001
0003114353100210 0003114361110300 0003115262010201 0003134114402100
0003144050220201 0003222350221200 0003223225201020 0003223242211101
0003225033121101 0003324041130201 0003401441132100 0004113371000211
0004114252100310 0004115153000211 0004115161010301 0004125043011111
0004215043100202 0005114151100410 0005115050110500 0005115060010401
0006113141102310 0006114060000411 0006212122114110 0011111771111100
0011113553111100 0011121672100011 0011121681010011 0011144151130101
0011222462020011 0012125136000021 0012142241311101 0012220551212001
0012310542212001 0012410441042010 0013143052100013 0013221333201120
0013222223212110 0013330251110022 0014220351011130 0014231151010131
0014320252000032 0014330151100023 0014331051010023 0023231152000023
0111224132130210 0112214132031210 0113213132201202 0114213031112202
0121212324202002

For instance, the underlined vector represents the monomial

c0010c0011c0100c0101c0110c
7
0111c

7
1000c1001c1010c1011c1100c1101.

The orbit of this monomial has size 96. Each of these 69 monomials listed above
does appear during the expansion of Schläfli’s formula, namely, when we expand
each of the 16 terms of the discriminant (5). But the coefficients of these monomials
sum to zero when we merge to form D2222.
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The distribution of the 69 orbits of “missing monomials” according to the face
dimension in N (D2222) is as follows:

0 1 2 3 4 5 6 7 8 9 10 11
0 0 15 3 20 13 7 5 6 0 0 0

The following method was used to generate all lattice points in N (D2222) and
hence to find the 20992 “missing monomials” in 69 orbits. We used the five equa-
tions A · x = (24, 12, 12, 12, 12)T and 268 facet defining inequalities of N (D2222)
which will be presented in the next section. By symmetry, it suffices to generate at
least one lattice point in each B4-orbit. We first listed all ways to assign eight non-
negative integers summing to 12 on the first facet, i.e., the first eight coordinates.
There were 50388 ways in all. Per the symmetry remark above, we kept only the
1349 ways which were lex-min under B3. We then extended each of these 1349 facet
assignments to the entire 4-cube as follows. We fixed two disjoint non-parallel edges
on the opposite facet, assigned all possible values for those four entries, and solved
for the remaining four entries via the five linear relations above. Of the resulting
4-cube assignments, 87435 have non-negative entries. We then tested these against
the facet inequalities and found that 80788 of them lay in the polytope. We now
had at least one representative from each orbit of lattice points in N (D2222). From
these we found 9686 orbits of lattice points. Removing the 9617 orbits of terms
which do appear in D2222, we found precisely the 69 additional orbits listed above.

4. Computing the Newton polytope

In this section we present our census of the vertices, facets, and other faces of
the Newton polytope of the 2 × 2 × 2 × 2-hyperdeterminant. The following result
completes the proof of Theorem 1. Being the analogue of equation (1), it shows the
increase in complexity when passing from the 3-cube to the 4-cube.

Proposition 4. The f-vector of the Newton polytope of D2222 equals

f
(
N (D2222)) = ( 25448, 178780, 555280, 1005946, 1176976,

927244, 495936, 176604, 39680, 5012, 268 ).

We computed the vertices of the Newton polytope N (D2222) starting from the
exponent vectors of the 2894276 monomials in 9617 orbits described in Section 3.
We took advantage of the symmetry group using the following heuristics: First,
we sorted the set of 9617 lex-min elements, one from each orbit, lexicographically
and then chose a small lexicographically contiguous subset. Within this subset,
we removed points that were redundant (i.e., not vertices) using POLYMAKE [11].
Whenever a point was found to be redundant, we removed its entire B4-orbit from
our original set of points. After a few iterations we obtained the convex hull of the
9617 lex-min elements, which has 1794 vertices. The union of the orbits of those
1794 points contains 484804 points. We repeated the same process on these 484804
points, finding redundant points in a small subset and removing their whole orbits.
We eventually reached a subset of 25448 points in 111 orbits which appeared to
be irredundant. We verified that these points are vertices by solving 111 linear
programming feasibility problems.

The tangent cone at a vertex v is the set {v + w ∈ R16 : v + ε ·w ∈ N (D2222) for
some ε > 0}. The faces of the tangent cone are in natural bijection with the faces
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of N (D2222) containing v. The vertex figure of a vertex v is the 10-dimensional
polytope obtained by cutting off v from its tangent cone.

Proof of Proposition 4. The facets and f -vector of N (D2222) were computed as fol-
lows: For each of the 111 vertex classes, we chose a representative v and subtracted
it from each of the other 25447 vertices. The cone generated by these 25447 differ-
ence vectors is (a translate of) the tangent cone at v. Using POLYMAKE, we computed
the faces of all dimensions of the 111 tangent cones. These computations were fairly
fast since N (D2222) is close to being simple. We now had at least one representative
from the B4-orbit of every face of N (D2222). Each face is represented by the set
of facets containing that face. With careful relabeling, we merged the 111 lists of
faces and computed their orbits, thus obtaining all faces of N (D2222). �

Here is a complete list of representatives for the 111 orbits of vertices. The
upper and lower indices attached to each vector are the coefficient and the orbit
size, respectively.

00020226622020001
320002022671112000−1

192 00020226801111001
192

0002022690010110−1
64 00020235710220001

384 00020235721010011
192

0002023580021100−1
3840002023581011001−1

384 00020235900101011
192

00020244800202001
19200020262262020001

96 0002027126112000−1
384

00020271271010101
19200020271350220001

384 0002027136011010−1
384

00020271450101101
19200020280261111001

192 0002028027101001−1
192

0002028035021100−1
38400020280360110011

384 0002028045010101−1
192

0002033470032000−1
19200020334811000021

96 0002033490010002−1
96

00020361361000201
3840002036145010020−1

384 00020370251220001
192

0002037026111010−1
3840002037034032000−1

192 00020370350210101
384

0002037036100011−1
38400020370450100111

384 00020370451000021
192

0002037054010002−1
1920002046035110020−1

384 00020460440200201
384

000204606004020016
1920002055050052000−16

96 0002055070030002−16
96

00021117711120001
9600021117712011001

192 0002111780111100−1
384

0002111781100110−1
19200021117900101101

192 0002112671022000−1
384

0002112671200200−1
3840002112672101001−1

384 00021126800211001
384

00021126801102001
38400021126810110011

192 00021126811001011
384

0002112690010101−1
19200021171171120001

96 00021171172011001
192

0002117118101010−1
3840002117126022000−1

192 0002117126200200−1
384

00021171270110101
38400021171271001101

384 0002117136010110−1
384

00021180181010011
1920002118027011001−1

384 0002118027100101−1
384

00021180360101011
38400021225700320001

192 0002122581100002−1
96

00021225900100021
480002201763101010−1

384 00022017720110101
192

00022017721001101
38400022026620220001

96 00022026622002001
192
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00022026631010011
3840002202672100101−1

384 00022170271000021
96

0002217036010002−1
19200023007523011001

384 0002300761211100−1
384

0002300762200110−1
19200023007711101101

192 00023016631000111
384

0002302563100002−1
19200023061360100021

96 0002400652300101−1
384

00024006612101011
1920002433050050002−1

96 00025005522100021
48

00030333900000031
1600030351450000301

192 00030360261010201
96

0003036045000021−1
1920003036063000003−1

64 00030450351000301
192

0003111671102001−1
19200031116801011011

192 0003111690000111−1
64

00031170171011101
960003117026100210−1

192 0003117036000111−1
192

00040440400440001
960004044080000004−27

16 00081111111180001
48

00091110111071101
480009111011108001−1

96 00111108810110101
92

00111117721010011
1920011111781011001−1

192 00111207712010011
192

0011120781100011−1
19201101009900101101

8 01101063360101101
32

The distribution of the 111 orbit sizes is

8 16 32 48 64 96 192 384
1 2 2 4 3 16 44 39

The distribution of the 111 corresponding extreme monomial coefficients is

1 −1 16 −16 −27
60 47 1 2 1

All but four of the monomials have coefficient ±1. The largest absolute value of a
coefficient appears in the monomial −27 · c4

0011c
4
0101c

4
0110c

8
1000c

4
1111 which has orbit

size 16. Its D-equivalence class will be discussed in Example 14. The monomial
16 · c2

0011c
4
0101c

6
0110c

6
1000c

4
1011c

2
1101 has orbit size 192, and there are two monomials

with coefficient −16, each having orbit size 96. Their D-equivalence classes will be
discussed in Example 15.

Among the 111 types of vertices, 35 are simple. The last underlined vertex,
representing the monomial 8·c0001c0010c0100c

9
0111c

9
1000c1011c1101c1110, has the largest

vertex figure. That vertex figure has the f -vector

(67, 873, 4405, 11451, 17440, 16452, 9699, 3446, 667, 56).

Thus this distinguished vertex is adjacent to 67 other vertices, and it lies in 56
facets. In Example 17 we shall see that this vertex corresponds to the largest D-
equivalence class of triangulations. Table 1 shows the distribution of the 111 types
of vertices according to the number of incident edges and facets.

The 268 facets of N (D2222) come in eight orbits. In Table 2 we present the
f -vector and the orbit size for each facet. We discuss the geometry of each of
the eight facet types. Since N (D2222) is a Minkowski summand of the secondary
polytope N (E2222), each facet normal of N (D2222) is a facet normal of N (E2222)
and hence corresponds to a coarsest regular subdivision of the 4-cube. We depict
each subdivision by its tight span, which is the complex of bounded faces of the
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Table 1. Distribution of the 111 vertices according to the number
of facets (columns) and edges (rows) containing the vertex.

11 12 13 14 15 16 17 18 19 20 21 22 26 28 29 39 56 total

11 35 35

12 14 14

13 13 5 1 19

14 1 2 3

15 1 3 1 1 1 7

16 1 1 2 4

17 1 1 3 1 1 7

18 1 3 1 1 6

19 1 1 2

20 1 1

21 1 1 1 3

22 1 1

23 1 1

25 1 1 2

26 1 1

27 1 1

30 1 1

32 1 1

42 1 1

67 1 1

total 35 28 11 7 8 4 4 1 2 1 2 2 1 2 1 1 1 111

Table 2. The eight types of facets of the Newton polytope N (D2222)

f -vector orbit
1 (11625,72614,197704,308238,303068,194347,80874,20906,3021,187) 16
2 (4112, 25746, 71456,115356,119228,81590,36802,10488, 1704, 122) 12
3 (363, 2289, 6538, 10996, 11921, 8581, 4080, 1239, 225, 22) 8
4 (938, 5226, 13182, 19716, 19263, 12765, 5758, 1721, 318, 31) 32
5 (336, 1937, 5126, 8121, 8468, 6022, 2928, 950, 194, 22) 48
6 (289, 1624, 4228, 6636, 6894, 4914, 2413, 798, 168, 20) 96
7 (450, 2526, 6522, 10103, 10315, 7195, 3440, 1099, 220, 24) 48
8 (681, 3906, 10323, 16407, 17194, 12264, 5933, 1877, 357, 34) 8

polyhedron {u ∈ R5 : u · A ≤ w}, where A is the 5 × 16-matrix in Section 1 and
w ∈ R16 is the facet normal in question.

Facet 1. These 16 facets are defined by inequalities like x0000 ≥ 0. The tight
span of the corresponding subdivision is a line segment. The two maximal cells are
the simplex obtained by slicing off one vertex and the convex hull of the other 15
vertices, which has f -vector (15, 34, 28, 9).

Facet 2. These 12 facets are given by inequalities like

x0000 + x0001 + x0010 + x0011 ≥ 2.

The tight span is a line segment. The two maximal cells in the corresponding
subdivision have f -vector (12, 24, 19, 7). Here we cut the 4-cube with the hyperplane
containing the eight vertices in a pair of opposite 2-faces.
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facet 1

(1,5) (23,15)

Figure 2. The tight spans dual to the subdivisions of the 4-cube
corresponding to the facets of N (D2222). Each vertex of a tight
span is labeled by the normalized volume and the number of ver-
tices of the corresponding maximal cell in the subdivision.

Facet 3. These 8 facets are given by inequalities like

2 · x0000 + x0001 + x0010 + x0100 + x1000 ≥ 2.

The tight span is a line segment, and the f -vector of both maximal cells is (11, 28,
26, 9). Here we cut the 4-cube with the hyperplane spanned by the six vertices
which have coordinate sum two, whose convex hull is an octahedron.

Facet 4. These 32 facets are given by inequalities like x0000 +x0001 ≤ 9. The tight
span is a triangle. Each of the three maximal cells is a prism over a square pyramid
and has f -vector (10, 21, 18, 7). They are formed by fixing an edge of the 4-cube
and joining that edge to the three facets which are disjoint from that edge. Any
two cells intersect in a triangular prism, and all three cells intersect in the rectangle
formed by the fixed edge and its opposite edge.

Facet 5. These 48 facets are given by inequalities like

x0000 + x0001 + x0010 + x0100 + x0110 + x1000 + x1001 ≥ 3.

The tight span is a triangle. Two of the three maximal cells have f -vector (10, 23,
21, 8) and intersect in a square pyramid; the other cell has f -vector (9, 18, 15, 6)
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and intersects each of the first two in a triangular prism. The intersection of all
three cells is a square.

Facet 6. These 96 facets are given by inequalities like

x0000 + x0001 + x0010 + x0011 + x0100 + x0110 + x1000 + x1001 ≥ 4.

The tight span is a tetrahedron. Two of the maximal cells have f -vector (8, 18, 17, 7)
and the other two have f -vector (9, 21, 20, 8). The intersection of all four cells is a
segment which is a diagonal of the 4-cube.

Facet 7. These 48 facets are given by inequalities like

x0000 + x0001 + x0010 + x0011 + x0100 + x1000 + x1100 ≤ 19.

The tight span is a square pyramid. The maximal cell corresponding to the tip of
the pyramid is the convex hull of two squares in complementary dimensions that
share a vertex. It has f -vector (7, 17, 18, 8) and meets each of the other four cells
in a triangle. The other four maximal cells have f -vector (8, 18, 17, 7), and their
intersection is a triangle. All the cells meet along a diagonal segment.

Facet 8. These 8 facets are given by inequalities like

2 · x0000 + x0001 + x0010 + x0100 + x1000 ≤ 18.

These facets are indexed by diagonals. We can identify the 4-cube with a boolean
lattice when we fix a diagonal. The maximal antichain in this lattice has the
structure of an octahedron. Each point in the antichain uniquely determines a
maximal cell in the subdivision. Hence the tight span is also an octahedron. Each
maximal cell is the convex hull of two squares in complementary dimensions joined
at a vertex, and each has f -vector (7, 17, 18, 8).

This concludes our discussion of the facets of the Newton polytope N (D2222).
The B4-orbits of the eight stated inequalities yield 268 facet inequalities. These
together with the identity A · x = (24, 12, 12, 12, 12)T gives an irredundant pre-
sentation of N (D2222) by linear equations and inequalities.

5. Tight spans and A-discriminants of other 0/1-polytopes

The concepts and computations presented in this paper make sense for any d×n-
integer matrix A whose row span contains the all-ones vector (1, 1, . . . , 1). Following
[12], the A-discriminant DA is an irreducible factor of the principal A-determinant
EA. The vertices of the secondary polytope N (EA) correspond to regular triangu-
lations of A, and these map onto the vertices of the Newton polytope N (DA). The
fibers of that map (i.e., the D-equivalence classes) and the normal fan of N (DA)
have recently been characterized in [8].

For fixed A and an arbitrary row vector w ∈ R
n, we consider the polyhedron

Pw = {u ∈ R
d : u · A ≤ w }.

This polyhedron is dual to the regular triangulation of A defined by w. The tight
span of (A, w) is the complex of bounded faces of the polyhedron Pw. For experts
in tropical geometry, we note that the (d − 2)-skeleton of Pw is the tropical hyper-
surface of (A, w). The polyhedron Pw also occurs naturally when relating regular
triangulations to linear programming duality as in [10, §1.2].

We propose that, for many matrices A of interest in combinatorics and discrete
convexity [13], the tight span is an excellent geometric representation of the data

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



THE HYPERDETERMINANT AND TRIANGULATIONS OF THE 4-CUBE 1667

(A, w). In Section 2 we studied the case when A is the 4 × 8-matrix representing
the 3-cube, and in Sections 4, 6, and 7 we are concerned with the case when A is
the 5× 16-matrix representing the 4-cube. In what follows, we present two related
situations which have appeared in the recent literature.

Example 5 (Tropical polytopes). Let A be the (r + s) × (r · s)-matrix which
represents the direct product of an (r − 1)-simplex ∆r−1 with an (s − 1)-simplex
∆s−1. The principal A-determinant EA is the product of all subdeterminants (of
all sizes) of an r × s-matrix of unknowns (cij); see [12, page 303].

For instance, if r = s = 3, then A represents the product of two triangles,

(6) A =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1
1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

,

and the A-discriminant DA is the determinant of the matrix

⎛
⎝c11 c12 c13

c21 c22 c23

c31 c32 c33

⎞
⎠ .

The degree 30 polynomial EA is the product of all 19 subdeterminants of this
matrix. The extreme monomials of EA appear in [12, Figure 39, page 250].

The Newton polytope N (EA) of the product of all subdeterminants is the sec-
ondary polytope whose faces correspond to regular polyhedral subdivisions of ∆r−1

× ∆s−1. The corresponding tight spans are precisely the tropical polytopes, which
are obtained as tropical convex hulls [9] of r points in (s− 1)-space. The combina-
torial classification of such polytopes is the analogue of what will be accomplished
for the 4-cube in the next section. We refer to recent work of Santos [18] for a dis-
cussion. His Section 5 deals with tropical polytopes, and his Figure 2 is essentially
the same as our Figure 1. Our number 235277 in Theorem 2 is the 4-cube analogue
of the numbers in the table at the end of Section 4 in [9] including the number 35
in [6, Fig. 1] and in [9, Fig. 6]. �

Example 6 (Injective hulls of finite metric spaces). The term “tight span” is de-
rived from the special case when A represents the second hypersimplex. As shown in
[13, 20], here the tight spans are precisely the injective hulls of finite metric spaces,
which play an important role in phylogenetic combinatorics. The case studied in
[20] concerns metrics on six points, where

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 1 1 1 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 1 1 1 0 0 0
0 0 1 0 0 0 1 0 0 1 0 0 1 1 0
0 0 0 1 0 0 0 1 0 0 1 0 1 0 1
0 0 0 0 1 0 0 0 1 0 0 1 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎦

.
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Here the A-discriminant DA is the determinant of the symmetric matrix
⎛
⎜⎜⎜⎜⎜⎜⎝

0 c12 c13 c14 c15 c16

c12 0 c23 c24 c25 c26

c13 c23 0 c34 c35 c36

c14 c24 c34 0 c45 c46

c15 c25 c35 c45 0 c56

c16 c26 c36 c46 c56 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Up to a constant, the principal A-determinant EA is the product of all principal
minors of size ≥ 3. This is a polynomial of degree 156 having 194160 extreme terms
in 339 symmetry classes [20, Theorem 1]. Thus our number 235277 is the 4-cube
analogue to the number 339 of generic six-point metrics. �

The prominent role of the second hypersimplex in phylogenetic combinatorics
raises the question of what happens for other hypersimplices. We propose the
following problem for further mathematical and computational research.

Problem 7 (The hypersimplex ∆(6, 3)). Let A be the 6×20-matrix whose columns
are the vertices ei + ej + ek (1 ≤ i < j < k ≤ 6) of the third hypersimplex ∆(6, 3).
What is the degree of the A-discriminant DA? Can the 14-dimensional polytope
N (DA) be computed? Can the monomial expansion of the A-discriminant DA be
computed?

All matrices A in the examples above have their entries in {0, 1}, so they repre-
sent subpolytopes of cubes of appropriate dimensions. In what follows, we examine
the A-discriminants of various subpolytopes of the 4-cube. These arise naturally as
irreducible factors in the initial forms of the hyperdeterminant.

For any vector w in R
16 we define the initial form inw(D2222) as the sum of

all terms in D2222 having minimal w-weight. If w is generic, then inw(D2222)
is a monomial, and we have classified all of these monomials in Section 4. We
now consider the other extreme case when w is as non-generic as possible. More
precisely, we pick w among the normal vectors to the facets of N (D2222).

Proposition 8 (All maximal initial forms of the hyperdeterminant). The following
list is the classification of the initial forms of hyperdeterminant D2222 correspond-
ing to all facets of its Newton polytope. The eight symmetry classes of facets of
N (D2222) are listed in the same order as in Section 4.

Facet 1. If w = e0000, then inw(D2222) is obtained from D2222 by setting c0000 = 0.
This initial form is irreducible: It is the A-discriminant where A is the 15-point
configuration obtained from the 4-cube by removing one vertex.

Facet 2. If w = e0000 + e0001 + e0010 + e0011, then inw(D2222) has 67230 terms and
factors as c1010c1001 − c1000c1011 times c0101c0110 − c0100c0111 times the square of
the 2 × 2 × 2-hyperdeterminant of [c1000, c1001, c1010, c1011, c0100, c0101, c0110, c0111]
times the product of two larger factors, each having 66 terms of degree six, which
are the A-discriminants of the two maximal cells in the subdivision.
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Facet 3. If w = 2 · e0000 + e0001 + e0010 + e0100 + e1000, then inw(D2222) equals

(1/4) · c0011c0101c0110c1001c1010c1100 ·
{

det

⎡
⎢⎢⎣

0 c0011 c0101 c1001

c0011 0 c0110 c1010

c0101 c0110 0 c1100

c1001 c1010 c1100 0

⎤
⎥⎥⎦

}2

×det

⎡
⎢⎢⎢⎢⎣

2c0000 c0001 c0010 c0100 c1000

c0001 0 c0011 c0101 c1001

c0010 c0011 0 c0110 c1010

c0100 c0101 c0110 0 c1100

c1000 c1001 c1010 c1100 0

⎤
⎥⎥⎥⎥⎦det

⎡
⎢⎢⎢⎢⎣

2c1111 c1110 c1101 c1011 c0111

c1110 0 c1100 c1010 c0110

c1101 c1100 0 c1001 c0101

c1011 c1010 c1001 0 c0011

c0111 c0110 c0101 c0011 0

⎤
⎥⎥⎥⎥⎦.

The squared factor is the A-discriminant of the octahedron, and the 5 × 5-deter-
minants are A-discriminants of the two maximal cells in this subdivision.

Facet 4. If w = −e0000 − e0001, then inw(D2222) equals

(c0000c1111 − c0001c1110)
3

·(c1100c1111 − c1101c1110)(c1010c1111 − c1011c1110)(c0110c1111 − c0111c1110)

·(c2
0000c1001c1111 − c2

0000c1011c1101 − c0000c0001c1000c1111 − c0000c0001c1001c1110

+c0000c0001c1010c1101 + c0000c0001c1011c1100 + c2
0001c1000c1110 − c2

0001c1010c1100)

·(c2
0000c0101c1111 − c2

0000c0111c1101 − c0000c0001c0100c1111 − c0000c0001c0101c1110

+c0000c0001c0110c1101 + c0000c0001c0111c1100 + c2
0001c0100c1110 − c2

0001c0110c1100)

·(c2
0000c0011c1111 − c2

0000c0111c1011 − c0000c0001c0010c1111 − c0000c0001c0011c1110

+c0000c0001c0110c1011 + c0000c0001c0111c1010 + c2
0001c0010c1110 − c2

0001c0110c1010).

The quartic factors are the A-discriminants of the three maximal cells.

Facet 5. If w = e0000 +e0001 +e0010 +e0100 +e0110 +e1000 +e1001, then inw(D2222)
equals c0000c0011c0101c1010c1100 times (c0011c1100 − c0101c1010)3 times

c0011c1100c1111 − c0011c1101c1110 − c0101c1010c1111

+c0101c1011c1110 + c0111c1010c1101 − c0111c1011c1100

times the product of two larger factors, each having 15 terms of degree five which
are the A-discriminants of the two cells with f -vector (10, 23, 21, 8).

In the remaining cases the tight spans are three-dimensional (Figure 2), and
the initial form inw(D2222) factors as a monomial times the product of the A-
discriminants of the maximal cells in that subdivision of the 4-cube.

Facet 6. If w = e0000 + e0001 + e0010 + e0011 + e0100 + e0110 + e1000 + e1001, then
inw(D2222) has 404 terms and factors as a monomial times the product of the
A-discriminants of the four maximal cells:

inw(D2222) = c0000 · c1100 · c4
1010 · c4

0101

·(c0101c1010c1111 − c0101c1011c1110 − c0111c1010c1101 + c0111c1011c1100)
·(c0000c0111c1011 − c0001c0111c1010 − c0010c0101c1011 + c0011c0101c1010)

·(c0000c0101c0111c1110 − c0000c
2
0111c1100 − c0010c

2
0101c1110

+c0010c0101c0111c1100 − c0100c0101c0111c1010 + c2
0101c0110c1010)

·(c0000c1010c1011c1101 − c0000c
2
1011c1100 − c0001c

2
1010c1101

+c0001c1010c1011c1100 − c0101c1000c1010c1011 + c0101c1001c
2
1010).
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Facet 7. If w = −e0000 − e0001 − e0010 − e0011 − e0100 − e1000 − e1100, then

inw(D2222) = c1111 · c4
0011 · c4

1100

·(c0000c0011c1100 − c0001c0010c1100 − c0011c0100c1000)
·(c0010c1000c1111 − c0010c1011c1100 − c0011c1000c1110 + c0011c1010c1100)
·(c0010c0100c1111 − c0010c0111c1100 − c0011c0100c1110 + c0011c0110c1100)
·(c0001c1000c1111 − c0001c1011c1100 − c0011c1000c1101 + c0011c1001c1100)
·(c0001c0100c1111 − c0001c0111c1100 − c0011c0100c1101 + c0011c0101c1100).

Facet 8. If w = −2 · e0000 − e0001 − e0010 − e0100 − e1000, then inw(D2222) equals

c3
0000 · c3

1111 · (c0000c1100c1111 − c0000c1101c1110 − c0100c1000c1111)
·(c0000c1010c1111 − c0000c1011c1110 − c0010c1000c1111)
·(c0000c0110c1111 − c0000c0111c1110 − c0010c0100c1111)
·(c0000c1001c1111 − c0000c1011c1101 − c0001c1000c1111)
·(c0000c0101c1111 − c0000c0111c1101 − c0001c0100c1111)
·(c0000c0011c1111 − c0000c0111c1011 − c0001c0010c1111).

These formulas show that A-discriminants for subconfigurations of the cube ap-
pear naturally as irreducible factors of leading forms of the hyperdeterminant. This
suggests the general problem of studying A-discriminants and the related tight
spans for various families of 0/1-polytopes. Other natural classes of configurations
for which a study of A-discriminants would be interesting include generalized per-
mutohedra, Birkhoff polytopes, and reflexive polytopes.

6. Vertices of the secondary polytope

The 4-cube is given by the 5× 16-matrix A in the Introduction. For any generic
vector w ∈ R16 we consider the tight span of (A, w) whose cells are the bounded
faces of the simple polyhedron Pw = {u ∈ R

5 : u · A ≤ w}. Each vertex of Pw

is indexed by five columns of A. This collection of 5-tuples, each regarded as a
4-simplex, is a regular triangulation Πw of the 4-cube (cf. [10, §5]).

The regular triangulations of the 4-cube are in bijection with the vertices of
the secondary polytope. As in Section 2, we define the secondary polytope as
the Newton polytope N (E2222) of the principal determinant E2222, which is the
following product of determinants associated to all faces of the 4-cube:

• 16 linear factors cijkl corresponding to the vertices,
• 24 quadratic factors D22 corresponding to the 2-faces,
• 8 quartic factors D222 corresponding to the facets,
• the hyperdeterminant D2222 corresponding to the solid 4-cube.

Thus the principal determinant E2222 is a polynomial in the 16 unknowns cijkl of
degree 120 = 16 · 1 + 24 · 2 + 8 · 4 + 1 · 24. The vertices of its Newton polytope
N (E2222) are the GKZ vectors of the regular triangulations of the 4-cube.

Recall from the first part of Theorem 2 that the 4-cube has 87959448 regular
triangulations, or, equivalently, N (E2222) has 87959448 vertices. Up to the action
of the Weyl group B4, there are 235277 types of regular triangulations. Thus, this
is the number of combinatorially distinct simple polyhedra Pw and also the number
of generic tight spans.
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Figure 3. Tight spans of the three triangulations in Example 10

The main objective of this section is to provide a detailed study of the regular
triangulations of the 4-cube, with emphasis on their tight spans. We present a
range of results which were computed from our data.

Corollary 9. The distribution of the 235277 symmetry classes of vertices of the
secondary polytope N (E2222) according to orbit size is as follows:

8 16 24 32 48 64 96 192 384
3 7 2 13 48 102 516 11357 223229

Example 10 (The most symmetric triangulations). One of the triangulations with
orbit size 8 is the staircase triangulation. Its tight span is a solid permutohe-
dron, and its GKZ vector is (4, 6, 6, 24, 6, 4, 4, 6, 6, 4, 4, 6, 24, 6, 6, 4). Another is the
unique triangulation that uses 16 maximal simplices. Eight simplices have volume
one and eight have volume two. Its GKZ vector is (1, 12, 12, 1, 12, 1, 1, 20, 20, 1, 1,
12, 1, 12, 12, 1), and its tight span is a 3-cube with tentacles attached to its vertices.
The third triangulation with orbit size 8 has a solid truncated 3-cube as its tight
span. Its GKZ vector is (3, 8, 8, 3, 8, 3, 3, 24, 24, 3, 3, 8, 3, 8, 8, 3). The tight spans of
these symmetric triangulations are shown in Figure 3. �

Table 3 classifies the regular triangulations according to the number of maximal
simplices used. It is well-known that the minimal number is sixteen (cf. [3]). We
see that any triangulation can only use at most one simplex of volume three, since
all such simplices contain the centroid of the cube as an interior point. There are
16 simplices of volume three, all of which are B4-equivalent; a representative is
{(1000), (1111), (0011), (0101), (0110)}.

Example 11 (Triangulating the 4-cube with 17 simplices). Table 3 shows that
there is a unique regular triangulation with 17 maximal simplices, ten of volume
one and seven of volume two. Its tight span, shown in Figure 4, is a cube with
a truncated vertex and tentacles attached to the seven original vertices. Its GKZ
vector is (1, 11, 12, 1, 12, 1, 1, 21, 20, 3, 1, 11, 1, 11, 12, 1). �

Table 4 classifies the tight spans according to their f -vectors and their signature,
by which we mean the set of dimensions of the maximal cells. Note that every
triangulation of the 4-cube has at most one interior edge (namely, a diagonal), so
each tight span has at most one 3-dimensional cell. The f -vector of a tight span
is determined by the number of vertices and 3-cells, i.e., the number of maximal
simplices and diagonals used in the triangulation.
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Table 3. Classification of regular triangulations of the 4-cube ac-
cording to the number and volumes of maximal simplices

# maximal # simplices of # B4-orbits of
simplices volume 1 volume 2 volume 3 triangulations

16 8 8 0 1
17 10 7 0 1
18 12 6 0 6
18 13 4 1 11
19 14 5 0 25
19 15 3 1 48
20 16 4 0 628
20 17 2 1 344
21 18 3 0 5847
21 19 1 1 1263
22 20 2 0 24499
22 21 0 1 1967
23 22 1 0 48648
24 24 0 0 151989

Table 4. Distribution of the 235277 types of triangulations. The
rows correspond to the f -vectors and the columns correspond to
the dimensions of maximal faces of the tight span.

{3} {3,2} {3,1} {3,2,1} {2} {2,1} total
(16, 20, 6, 1) 1 1
(17, 22, 7, 1) 1 1
(18, 24, 8, 1) 4 2 6
(18, 23, 6, 0) 11 11
(19, 26, 9, 1) 6 19 25
(19, 25, 7, 0) 48 48
(20, 28, 10, 1) 1 23 209 233
(20, 27, 8, 0) 24 715 739
(21, 30, 11, 1) 5 34 1372 1411
(21, 29, 9, 0) 392 5307 5699
(22, 32, 12, 1) 112 84 9342 9538
(22, 31, 10, 0) 2156 14772 16928
(23, 34, 13, 1) 2116 100 46432 48648
(24, 36, 14, 1) 125 27054 124810 151989

total 125 29288 253 182186 2572 20853 235277

Example 12 (The smallest tight spans of signature {3, 2} and {3, 2, 1}). The
unique tight span of signature {3, 2} with 20 vertices contains a solid tetrahedron
with six hexagons attached, one to each of the tetrahedron’s edges. See Figure
4. Its triangulation has GKZ vector (5, 2, 2, 15, 2, 15, 15, 4, 24, 5, 5, 2, 5, 2, 2, 15) and
lies in the 88th D-equivalence class.

There are two tight spans of signature {3, 2, 1} with 18 vertices. Their GKZ vec-
tors are (1, 9, 13, 2, 12, 1, 1, 21, 19, 6, 1, 9, 1, 11, 12, 1) and (1, 12, 12, 1, 11, 1, 1, 21, 19,
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Figure 4. The triangulations in Examples 11 and 12

1, 1, 13, 5, 10, 10, 1). They are both in the largest D-equivalence class. One of them
is shown in Figure 4. The other has a triangle and a tentacle in place of the
rectangular maximal 2-face. �

The first column in Table 4 is especially interesting as it ties in with an active area
of research in combinatorial commutative algebra. Using the language introduced
in [4], the d-cube is a Gorenstein polytope, and the tight spans of signature {d− 1}
are precisely its Gorenstein triangulations. The 3-cube has only one Gorenstein
triangulation, corresponding to the last type in Figure 1.

Example 13 (The Gorenstein triangulations of the 4-cube). The 4-cube has pre-
cisely 125 types of Gorenstein triangulations. Two of them are pictured in Figure
3. The Stanley-Reisner ideal of a Gorenstein triangulation corresponds to an initial
ideal of the Segre variety P

1 × P
1 × P

1 × P
1 ⊂ P

15 that is squarefree and Goren-
stein. The minimal free resolution of the Alexander dual of this monomial ideal is
cellular and is supported on the tight span itself. For tropical polytopes (Example
5) this was shown in [2], but the same holds for unimodular regular triangulations
of arbitrary polytopes, including the 4-cube. All 125 Gorenstein tight spans are
deformed permutohedra, and it would be interesting to study their combinatorics
in arbitrary dimensions d ≥ 4. �

We now return to our discussion of the hyperdeterminant D2222. Since D2222 is a
factor of the principal determinant E2222, there is a natural many-to-one map from
the vertices of N (E2222) to the vertices of N (D2222). Two regular triangulations
are D-equivalent if they are mapped to the same vertex of N (D2222). For the
3-cube the D-equivalence classes were described in Section 2. Table 5 shows the
decomposition of the number 87959448 of regular triangulations of the 4-cube into
the cardinalities of the orbits of D-equivalence classes. Thus the identity expressed
in Table 5 is the 4-cube version of the identity (3) for the 3-cube. The 111 orbits of
D-equivalence classes are listed in the order of the corresponding orbits of vertices
of N (D2222) in Section 4.

In the triangulations of the 4-cube, the centroid (1, 1
2 , 1

2 , 1
2 , 1

2 ) is in the relative
interior of one of the following three kinds of simplices: a 4-simplex of normalized
volume 3, a tetrahedron of normalized volume 2, or a diagonal.

Example 14 (The “coefficient −27 class”). The triangulations which use a fixed
simplex of normalized volume three form a single D-equivalence class of cardinality
82832. This class corresponds to the vertex 0004044080000004−27

16 of N (D2222). The
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Table 5. Decomposition into D-equivalence classes

87959448
= 32 · 2116 + 192 · 644 + 192 · 2752 + 64 · 30390
+ 384 · 1550 + 192 · 368 + 384 · 3742 + 384 · 716
+ 192 · 10384 + 192 · 20552 + 96 · 1444 + 384 · 380
+ 192 · 4408 + 384 · 1318 + 384 · 940 + 192 · 468
+ 192 · 2584 + 192 · 18050 + 384 · 4122 + 384 · 11614
+ 192 · 9090 + 192 · 5276 + 96 · 2440 + 96 · 22788
+ 384 · 3182 + 384 · 1358 + 192 · 1444 + 384 · 760
+ 192 · 5140 + 384 · 940 + 384 · 4068 + 384 · 2810
+ 192 · 7956 + 192 · 15260 + 384 · 1318 + 384 · 3278
+ 192 · 18964 + 96 · 18340 + 96 · 21192 + 96 · 196
+ 192 · 392 + 384 · 1616 + 192 · 1428 + 192 · 18042
+ 384 · 454 + 384 · 336 + 384 · 112 + 384 · 2112
+ 384 · 780 + 192 · 212 + 384 · 336 + 192 · 4624
+ 96 · 100 + 192 · 200 + 384 · 1360 + 192 · 338
+ 384 · 240 + 384 · 288 + 384 · 200 + 384 · 96
+ 192 · 8770 + 384 · 5852 + 384 · 2180 + 384 · 1692
+ 192 · 1490 + 96 · 392 + 48 · 3344 + 384 · 908
+ 192 · 4056 + 384 · 1392 + 96 · 1152 + 192 · 576
+ 384 · 232 + 384 · 480 + 96 · 900 + 192 · 1690
+ 384 · 1096 + 384 · 956 + 192 · 1508 + 192 · 1856
+ 384 · 280 + 192 · 676 + 96 · 2304 + 384 · 676
+ 192 · 676 + 96 · 2304 + 48 · 1152 + 16 · 141888
+ 192 · 4600 + 96 · 2888 + 192 · 2700 + 64 · 23584
+ 192 · 5140 + 192 · 112 + 192 · 424 + 64 · 6570
+ 96 · 400 + 192 · 200 + 192 · 580 + 96 · 18340
+ 16 · 82832 + 48 · 11764 + 48 · 6200 + 96 · 58150
+ 192 · 4860 + 192 · 96 + 192 · 288 + 192 · 352
+ 192 · 1240 + 8 · 349555 + 32 · 64

corresponding monomial in D2222 has the largest absolute value of any coefficient,
namely −27, among all the extreme monomials. �

Example 15 (The “coefficient ±16 classes”). The triangulations in which the
centroid is in a fixed tetrahedron of volume two form a D-equivalence class cor-
responding to one of the extreme monomials of D2222 with coefficient ±16, which
come in three symmetry classes underlined in Table 5 and following the proof of
Proposition 4. There are 24 such tetrahedra, all lying in a single B4 orbit. The
hyperplane spanned by the special tetrahedron contains eight vertices of the 4-cube,
and there are four vertices on each side. In each triangulation, one vertex from each
side is joined to the special tetrahedron. The Hamming distance between these two
vertices can be two, three, or four, and they correspond precisely to the three D-
equivalence classes with coefficient ±16. The first underlined class corresponds to
Hamming distance three where there are two choices on one side after the vertex
on the other side is chosen. Hence it has orbit size 24 × 4 × 2 = 192. The sec-
ond and third underlined classes correspond to Hamming distances four and two,
respectively, and have orbit size 24 × 4 = 96. �
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Figure 5. Tight spans of triangulations in Examples 16, 14, and 18

The other D-equivalence classes contain only triangulations using a diagonal of
the 4-cube, and all those classes contain some unimodular triangulations.

Example 16 (The smallest D-equivalence class). This class has only 64 triangu-
lations and corresponds to the last summand in Table 5. The tight span of each
of these 64 triangulations contains a hexagonal prism and six lower-dimensional
pieces attached to alternating edges of the prism, as shown on the left in Figure 5.
Each of these six lower-dimensional pieces is either a rectangle or a triangle with a
tentacle, whence the number 26 = 64. �
Example 17 (The largest D-equivalence class). This class has 349555 triangula-
tions and corresponds to the vertex of N (D2222) which has the largest vertex figure
and the smallest orbit size. It contains all the triangulations in Examples 10, 11,
and 13. �

Using our data, it is easy to study other questions concerning regular triangu-
lations of the 4-cube. Answering a question which was left open in [19], we found
that the 4-cube does not possess any delightful triangulations. Such a triangula-
tion would correspond to a square-free initial ideal of the first secant variety of
P1 × P1 × P1 × P1 ⊂ P15, which has dimension 9 and degree 64. For every regular
triangulation Π we computed the number of 10-element subsets of the vertices of
the 4-cube which are the union of vertices of two simplices in Π. That number is
bounded above by 64, and Π would be delightful if equality holds.

Example 18 (The most delightful triangulation). We found that the maximum
number of 10-sets of vertices which are the unions of vertices of two simplices in a
regular triangulation is 56. This number is attained by two triangulations which are
both in D-equivalence classes of type 11. Their GKZ vectors are (1, 4, 4, 11, 6, 13, 9,
12, 12, 9, 13, 6, 11, 4, 4, 1) and (1, 4, 4, 11, 6, 13, 9, 12, 12, 11, 13, 4, 9, 4, 6, 1). Both of
the corresponding tight spans have f -vector (24, 36, 14, 1) and consist of two max-
imal edges, eight maximal 2-faces, and one 3-cube. The tight span of the first
triangulation is shown in Figure 5. �

7. Facets of the secondary polytope

The facets of the secondary polytope correspond to the coarsest regular poly-
hedral subdivisions Π. Here coarsest means that Π refines no other proper subdi-
visions. We computed all such subdivisions for the 4-cube. This result gives an
irredundant inequality representation of the secondary polytope N (E2222) of the
4-cube, analogous to that of the 3-cube in expression (2).
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Since the Newton polytope N (D2222) is a summand of the secondary polytope
N (E2222), all facet normals of N (D2222) are also facet normals of N (E2222). Thus
we already know 268 facets of the secondary polytope from Section 4. Furthermore
the linear equations Ax = (120, 60, 60, 60, 60)T hold on N (E2222).

In order to compute the facets of the secondary polytope of the 4-cube, we first
wrote a program to compute the GKZ vector of each regular triangulation of the
4-cube. The information about the triangulations themselves was obtained using
TOPCOM. We then used the following method to compute the facets of the sec-
ondary polytope, which can be applied to any point configuration with symmetry.

Since N (E2222) is an 11-dimensional polytope with 87959448 vertices, computing
its facets is currently out of the scope of any general polyhedral software. Thus, to
compute the facets, we took advantage of the relationship between the secondary
polytope and subdivisions of the 4-cube. Namely, we know that each vertex of
N (E2222) corresponds to a regular triangulation of the 4-cube, and, by [12, §7.2.C],
each edge (v, w) of N (E2222) corresponds to the circuit connecting the two trian-
gulations represented by the vertices v and w.

Note that, given any triangulation of the 4-cube, there are relatively few circuits
which contain a face of the triangulation. As a result, each tangent cone of N (E2222)
is generated by relatively few vectors. Hence we computed the facets of N (E2222)
by equivalently computing the facets of its tangent cones. Although there are
87959448 tangent cones, they come in 235227 orbits under the B4-action. Thus,
we only computed the facets of 235227 tangent cones; all other facets of N (E2222)
were obtained by applying the B4-action.

We found that N (E2222) has 80876 facets in 334 orbits. Thus the 4-cube admits
exactly 80876 coarsest regular subdivisions. The distribution of the types of coarsest
regular subdivisions according to orbit size is

8 12 16 24 32 48 64 96 192 384
2 1 4 2 4 14 16 26 132 133

Example 19 (The most symmetric coarsest regular subdivisions). The three most
symmetric coarsest regular subdivisions come from facets of N (D2222). The two
coarsest subdivisions with orbit size 8 correspond to Facet 3 and Facet 8 in Sections
4 and 5. Their tight spans are a segment and an octahedron, respectively. The
unique subdivision with orbit size 12 corresponds to Facet 2 in Sections 4 and 5.
Its tight span is also a line segment. �

The distribution of the orbits according to the number of maximal cells in the
subdivision and the dimensions of maximal faces of the tight span are shown in
Table 6. A coarsest subdivision of the 4-cube can have up to 13 maximal cells.
Here it is no longer the case that the number of vertices and 3-faces determine the
f -vector of the tight span. There are 33 types of f -vectors.

Example 20 (The missing split). The 4-cube admits 4 splits, i.e., subdivisions ob-
tained by slicing the 4-cube with a hyperplane, whose tight spans are line segments.
Three of them correspond to Facets 1, 2, and 3 of N (D2222). The remaining split
subdivides the 4-cube into 2 cells with 8 and 14 vertices each, having normalized
volumes 4 and 20, respectively. The corresponding facets of N (E2222) are given by
inequalities of the form x0000 + x0001 ≥ 5. �

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



THE HYPERDETERMINANT AND TRIANGULATIONS OF THE 4-CUBE 1677

Table 6. Distribution of the 334 types of coarsest regular subdi-
visions. The rows correspond to the number of maximal cells and
the columns correspond to the signatures of the tight span.

{3} {3,2} {2} {1} total
2 4 4
3 5 5
4 3 7 10
5 4 3 17 24
6 5 14 12 31
7 13 21 39 73
8 7 31 51 89
9 7 26 24 57
10 2 14 21 37
11 1 1 2
12 1 1
13 1 1

total 44 176 110 4 334

Example 21 (The largest tight span). There is a unique coarsest regular sub-
division with 13 maximal cells. Its tight span is a 3-dimensional polytope with
f -vector (13, 24, 13, 1), as shown in Figure 6. The corresponding facets are given
by inequalities like x0000 + x1111 − x0011 ≤ 44. �
Example 22 (The largest tight span with non-pure dimension). Almost half of
the coarsest regular subdivisions have a pure dimensional tight span. The largest
non-pure dimensional tight span has f -vector (11, 20, 11, 1). It contains one 3-
dimensional face and two maximal 2-faces. A figure is depicted in Figure 6. The
corresponding facets are given by inequalities like

x0000 + x1010 + x1111 − x1000 − x1001 − x1011 ≤ 47.

�
All the 334 facet inequalities and all the data we have discussed in this paper

are available on our website bio.math.berkeley.edu/4cube/.

(20,14)(4,8)
 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 
 

 

 

 

 

 

 

  
 

 

  

 
 

 

 

 

 

 

 

 

 

 

 

  

 

  

 

 

Figure 6. The tight spans for Examples 20, 21, and 22
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