Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Error analysis of fully discrete velocity-correction methods for incompressible flows


Authors: J. L. Guermond, Jie Shen and Xiaofeng Yang
Journal: Math. Comp. 77 (2008), 1387-1405
MSC (2000): Primary 65M12, 35Q30, 35J05, 76D05
DOI: https://doi.org/10.1090/S0025-5718-08-02109-1
Published electronically: March 7, 2008
MathSciNet review: 2398773
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A fully discrete version of the velocity-correction method, proposed by Guermond and Shen (2003) for the time-dependent Navier-Stokes equations, is introduced and analyzed. It is shown that, when accounting for space discretization, additional consistency terms, which vanish when space is not discretized, have to be added to establish stability and optimal convergence. Error estimates are derived for both the standard version and the rotational version of the method. These error estimates are consistent with those by Guermond and Shen (2003) as far as time discretiztion is concerned and are optimal in space for finite elements satisfying the inf-sup condition.


References [Enhancements On Off] (What's this?)

  • [1] C. Bernardi and Y. Maday, Uniform inf-sup conditions for the spectral discretization of the Stokes problem, Math. Models Methods Appl. Sci. 9 (1999), no. 3, 395-414. MR 1686546 (2000b:65208)
  • [2] David L. Brown, Ricardo Cortez, and Michael L. Minion, Accurate projection methods for the incompressible Navier-Stokes equations, J. Comput. Phys. 168 (2001), no. 2, 464-499. MR 1826523 (2002a:76112)
  • [3] A. J. Chorin, Numerical solution of the Navier-Stokes equations, Math. Comp. 22 (1968), 745-762. MR 0242392 (39:3723)
  • [4] W. E and J. G. Liu, Projection method I: Convergence and numerical boundary layers, SIAM J. Numer. Anal. 32 (1995), 1017-1057. MR 1342281 (96e:65061)
  • [5] Weinan E and Jian-Guo Liu, Gauge method for viscous incompressible flows, Commun. Math. Sci. 1 (2003), no. 2, 317-332. MR 1980478 (2004c:76039)
  • [6] V. Girault and P. A. Raviart, Finite element methods for Navier-Stokes equations, Springer-Verlag, 1986. MR 851383 (88b:65129)
  • [7] K. Goda, A multistep technique with implicit difference schemes for calculating two- or three-dimensional cavity flows, J. Comput. Phys. 30 (1979), 76-95.
  • [8] J. L. Guermond, Some implementations of projection methods for Navier-Stokes equations, RAIRO Modél. Math. Anal. Numér. 30 (1996), no. 5, 637-667. MR 1411394 (97h:76086)
  • [9] J.-L. Guermond, Un résultat de convergence d'ordre deux en temps pour l'approximation des équations de Navier-Stokes par une technique de projection incrémentale, M2AN Math. Model. Numer. Anal. 33 (1999), no. 1, 169-189; also in C. R. Acad. Sci. Paris, Série I, 325:1329-1332, 1997. MR 2000k:65171
  • [10] J.-L. Guermond and L. Quartapelle, On the approximation of the unsteady Navier-Stokes equations by finite element projection methods, Numer. Math. 80 (1998), no. 5, 207-238. MR 1645029 (99i:65105)
  • [11] J. L. Guermond and Jie Shen, A new class of truly consistent splitting schemes for incompressible flows, J. Comput. Phys. 192 (2003), no. 1, 262-276. MR 2045709 (2005k:76076)
  • [12] -, Velocity-correction projection methods for incompressible flows, SIAM J. Numer. Anal. 41 (2003), no. 1, 112-134 (electronic). MR 1974494 (2004c:65103)
  • [13] J. L. Guermond, P. Minev, and Jie Shen, An overview of projection methods for incompressible flows, Comput. Methods Appl. Mech. Engrg. 195 (2006), 6011-6045. MR 2250931 (2007g:76157)
  • [14] J. L. Guermond and Jie Shen, On the error estimates of rotational pressure-correction projection methods, Math. Comp 73 (2004), 1719-1737. MR 2059733 (2005f:65113)
  • [15] J. G. Heywood and R. Rannacher, Finite element approximation of the nonstationary Navier-Stokes problem. I. Regularity of solutions and second-order error estimates for spatial discretization, SIAM J. Numer. Anal. 19 (1982), 275-311. MR 650052 (83d:65260)
  • [16] -, Finite element approximation of the nonstationary Navier-Stokes problem. III. Smoothing property and higher order estimates for spatial discretization, SIAM J. Numer. Anal. 25 (1988), 489-512. MR 942204 (89k:65114)
  • [17] Hans Johnston and Jian-Guo Liu, Accurate, stable and efficient Navier-Stokes solvers based on explicit treatment of the pressure term, J. Comput. Phys. 199 (2004), no. 1, 221-259. MR 2081004 (2005b:76093)
  • [18] G. E. Karniadakis, M. Israeli, and S. A. Orszag, High-order splitting methods for the incompressible Navier-Stokes equations, J. Comput. Phys. 97 (1991), 414-443. MR 1137607 (92h:76066)
  • [19] G. E. Karniadakis and S. J. Sherwin, Spectral/hp element methods for cfd, Oxford University Press, 1999. MR 1696933 (2000h:76120)
  • [20] J. Kim and P. Moin, Application of a fractional-step method to incompressible Navier-Stokes equations, J. Comput. Phys. 59 (1985), 308-323. MR 796611 (87a:76046)
  • [21] Ricardo H. Nochetto and Jae-Hong Pyo, Error estimates for semi-discrete gauge methods for the Navier-Stokes equations, Math. Comp. 74 (2005), no. 250, 521-542 (electronic). MR 2114636 (2005i:65132)
  • [22] S. A. Orszag, M. Israeli, and M. Deville, Boundary conditions for incompressible flows, J. Sci. Comput. 1 (1986), 75-111.
  • [23] Andreas Prohl, Projection and quasi-compressibility methods for solving the incompressible Navier-Stokes equations, Advances in Numerical Mathematics, B.G. Teubner, Stuttgart, 1997. MR 1472237 (98k:65058)
  • [24] J. Shen, On error estimates of projection methods for the Navier-Stokes equations: Second-order schemes, Math. Comp. 65 (1996), no. 215, 1039-1065. MR 1348047 (96j:65091)
  • [25] J. Shen and Xiaofeng Yang, Error estimates for finite element approximations of consistent splitting schemes for incompressible flows, DCDS-B 8 (2007), 663-676. MR 2328729
  • [26] Jie Shen, On error estimates of the projection methods for the Navier-Stokes equations: First-order schemes, SIAM J. Numer. Anal. 29 (1992), 57-77. MR 1149084 (92m:35213)
  • [27] R. Temam, Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires II, Arch. Rat. Mech. Anal. 33 (1969), 377-385. MR 0244654 (39:5968)
  • [28] L. J. P. Timmermans, P. D. Minev, and F. N. Van De Vosse, An approximate projection scheme for incompressible flow using spectral elements, Int. J. Numer. Methods Fluids 22 (1996), 673-688.
  • [29] J. van Kan, A second-order accurate pressure-correction scheme for viscous incompressible flow, SIAM J. Sci. Stat. Comput. 7 (1986), 870-891. MR 848569 (87h:76008)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 65M12, 35Q30, 35J05, 76D05

Retrieve articles in all journals with MSC (2000): 65M12, 35Q30, 35J05, 76D05


Additional Information

J. L. Guermond
Affiliation: Department of Mathematics, Texas A$&$M University, College Station, Texas 77843
Email: guermond@math.tamu.edu

Jie Shen
Affiliation: Department of Mathematics, Purdue University, West Lafayette, Indiana 47907
Email: shen@math.purdue.edu

Xiaofeng Yang
Affiliation: Department of Mathematics, University of North Carolina, Chapel Hill, NC 27599
Email: xfyang@unc.edu

DOI: https://doi.org/10.1090/S0025-5718-08-02109-1
Keywords: Navier-Stokes equations, velocity-correction, projection methods, finite element methods, spectral methods, incompressibility, fraction step methods
Received by editor(s): December 29, 2006
Received by editor(s) in revised form: June 3, 2007
Published electronically: March 7, 2008
Additional Notes: The work of the first author was supported in part by NSF DMS-0510650
The work of the second and third authors was supported in part by NSF DMS-0509665 and DMS-0610646
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society