Douglas N. Arnold, Gerard Awanou, and Ragnar Winther, Finite elements for symmetric tensors in three dimensions 1229
Yunqing Huang and Jinchao Xu, Superconvergence of quadratic finite elements on mildly structured grids .. 1253
Yanping Chen, Superconvergence of mixed finite element methods for optimal control problems ... 1269
J. Guzmán, Local and pointwise error estimates of the local discontinuous Galerkin method applied to the Stokes problem 1293
Jaewon Ku, Weak coupling of solutions of first-order least-squares method . 1323
Qiya Hu, Shi Shu, and Jun Zou, A mortar edge element method with nearly optimal convergence for three-dimensional Maxwell’s equations 1333
Ferenc Izsák, Davit Harutyunyan, and Jaap J.W. van der Vegt, Implicit a posteriori error estimates for the Maxwell equations 1355
J. L. Guermond, Jie Shen, and Xiaofeng Yang, Error analysis of fully discrete velocity-correction methods for incompressible flows 1387
Edward J. Fuselier, Sobolev-type approximation rates for divergence-free and curl-free RBF interpolants 1407
Jan S. Hesthaven and Robert M. Kirby, Filtering in Legendre spectral methods .. 1425
Zhen-Huan Teng, Modified equation for adaptive monotone difference schemes and its convergent analysis .. 1453
Xiliang Lu, Ping Lin, and Jian-Guo Liu, Analysis of a sequential regularization method for the unsteady Navier-Stokes equations 1467
Francisco Guillén-González and Juan Vicente Gutiérrez-Santacreu, Unconditional stability and convergence of fully discrete schemes for 2D viscous fluids models with mass diffusion 1495
J. Fontbona and S. Méleard, A random space-time birth particle method for 2d vortex equations with external field 1525
Peter Bürgisser, Felipe Cucker, and Martin Lotz, The probability that a slightly perturbed numerical analysis problem is difﬁcult 1559
C. Brezinski and M. Redivo-Zaglia, Rational extrapolation for the PageRank vector ... 1585
J. S. Brauchart, Optimal logarithmic energy points on the unit sphere .. 1599
B. C. Carlson, Power series for inverse Jacobian elliptic functions 1615
Xuan-Yong Zhu and Wen-Feng Qi, On the distinctness of modular reductions of maximal length sequences modulo odd prime powers .. 1623
J. E. Cremona, Unimodular integer circulants 1639
Peter Huggins, Bernd Sturmfels, Josephine Yu, and Debbie S. Yuster, The hyperdeterminant and triangulations of the 4-cube 1653
Peter Borwein, Ron Ferguson, and Michael J. Mossinghoff, Sign changes in sums of the Liouville function 1681
Shahar Golan, Equal moments division of a set 1695
Tadej Kotnik, Computational estimation of the constant $\beta(1)$ characterizing the order of $\zeta(1 + it)$.. 1713
<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scott Ahlgren</td>
<td>On the irreducibility of Hecke polynomials</td>
<td>1725</td>
</tr>
<tr>
<td>H. Kadiri</td>
<td>Short effective intervals containing primes in arithmetic progressions and the seven cubes problem</td>
<td>1733</td>
</tr>
<tr>
<td>Patrick Costello and Michael Osborne</td>
<td>Periodicity of the parity of a partition function related to making change</td>
<td>1749</td>
</tr>
<tr>
<td>A. Bostan, F. Morain, B. Salvy, and É. Schost</td>
<td>Fast algorithms for computing isogenies between elliptic curves</td>
<td>1755</td>
</tr>
<tr>
<td>Helen Avelin</td>
<td>Computations of Eisenstein series on Fuchsian groups</td>
<td>1779</td>
</tr>
<tr>
<td>Harald Meyer</td>
<td>Primitive central idempotents of finite group rings of symmetric groups</td>
<td>1801</td>
</tr>
<tr>
<td>Akinari Hoshi and Yūichi Rikuna</td>
<td>Rationality problem of three-dimensional purely monomial group actions: the last case</td>
<td>1823</td>
</tr>
<tr>
<td>Maxime Augier and Shalom Eliahou</td>
<td>Parity-regular Steinhaus graphs</td>
<td>1831</td>
</tr>
<tr>
<td>Weiling Yang and Fuji Zhang</td>
<td>Links and cubic 3-polytopes</td>
<td>1841</td>
</tr>
<tr>
<td>Takeshi Goto and Yasuo Ohno</td>
<td>Odd perfect numbers have a prime factor exceeding 10^8</td>
<td>1859</td>
</tr>
<tr>
<td>K. G. Hare and C. J. Smyth</td>
<td>Corrigendum to “The monic integer transfinite diameter”</td>
<td>1869</td>
</tr>
</tbody>
</table>
Editorial Information

Information on the backlog for this journal can be found on the AMS website starting from http://www.ams.org/mcom.

In an effort to make articles available as quickly as possible, articles are posted to the AMS website individually after proof is returned from authors and before appearing in an issue.

A Consent to Publish and Copyright Agreement is required before a paper will be published in this journal. After a paper is accepted for publication, the Providence office will send out a Consent to Publish and Copyright Agreement to all authors of the paper. By submitting a paper to this journal, authors certify that the results have not been submitted to nor are they under consideration for publication by another journal, conference proceedings, or similar publication.

Information for Authors

Initial submission. The AMS uses Centralized Manuscript Processing for initial submission. Authors should submit a PDF file using the Initial Manuscript Submission form found at www.ams.org/cgi-bin/peertrack/submission.pl, or send one copy of the manuscript to the following address: Centralized Manuscript Processing, MATHEMATICS OF COMPUTATION, 201 Charles Street, Providence, RI 02904-2294 USA. If a paper copy is being forwarded to the AMS, indicate that it is for Mathematics of Computation and include the name of the corresponding author and contact information, such as an email address or mailing address. The author may suggest an appropriate editor for his or her paper.

The first page must consist of a descriptive title, followed by an abstract that summarizes the article in language suitable for workers in the general field (algebra, analysis, etc.). The descriptive title should be short, but informative; useless or vague phrases such as “some remarks about” or “concerning” should be avoided. The abstract must be brief, reasonably self-contained, and not exceed 300 words. Included with the footnotes to the paper should be the 2000 Mathematics Subject Classification representing the primary and secondary subjects of the article. The classifications are accessible from www.ams.org/msc/. The list of classifications is also available in print starting with the 1999 annual index of Mathematical Reviews. The Mathematics Subject Classification footnote may be followed by a list of key words and phrases describing the subject matter of the article and taken from it. Journal abbreviations used in bibliographies are listed in the latest Mathematical Reviews annual index. The series abbreviations are also accessible from www.ams.org/publications/. To help in preparing and verifying references, the AMS offers MR Lookup, a Reference Tool for Linking, at www.ams.org/mrlookup/.

Electronically prepared manuscripts. For the final submission of accepted papers, the AMS encourages use of electronically prepared manuscripts, with a strong preference for \texttt{AMSL-\LaTeX}. To this end, the Society has prepared \texttt{AMSL-\LaTeX} author packages for each AMS publication. Author packages include instructions for preparing electronic manuscripts, samples, and a style file that generates the particular design specifications of that publication series. Articles properly prepared using the \texttt{AMSL-\LaTeX} style file and the \texttt{\label} and \texttt{\ref} commands automatically enable extensive intra-document linking to the bibliography and other elements of the article for searching electronically on the Web. Because linking must often be added manually to electronically prepared manuscripts in other forms of \LaTeX, using \texttt{AMSL-\LaTeX} also reduces the amount of technical intervention once the files are received by the AMS. This results in fewer errors in processing and saves the author proofreading time. \texttt{AMSL-\LaTeX} papers also move more efficiently through the production stream, helping to minimize publishing costs.

\texttt{AMSL-\LaTeX} is the highly preferred format of \LaTeX, but author packages are also available in \texttt{AMSL-T\LaTeX}. Those authors who make use of these style files from the beginning of the writing process will further reduce their own efforts. Manuscripts prepared electronically in \texttt{I\TeX} or plain \LaTeX are normally not acceptable due to the high amount of technical time required to insure that the file will run properly through the AMS in-house production.
system. \LaTeX{} users will find that \texttt{AMS-LaTeX} is the same as \LaTeX{} with additional commands to simplify the typesetting of mathematics, and users of plain \TeX{} should have the foundation for learning \texttt{AMS-LaTeX}.

Authors may retrieve an author package from the AMS website starting from \texttt{www.ams.org/tex/} or via FTP to \texttt{ftp.ams.org} (login as \texttt{anonymous}, enter username as password, and type \texttt{cd pub/author-info}). The \textit{AMS Author Handbook} and the \textit{Instruction Manual} are available in PDF format following the author packages link from \texttt{www.ams.org/tex/}. The author package can also be obtained free of charge by sending email to \texttt{tech-support@ams.org} (Internet) or from the Publication Division, American Mathematical Society, 201 Charles Street, Providence, RI 02904-2294 USA. When requesting an author package, please specify \texttt{AMS-LaTeX} or \texttt{AMS-TeX} and the publication in which your paper will appear. Please be sure to include your complete email address.

After acceptance. The final version of the electronic manuscript should be sent to the Providence office immediately after the paper has been accepted for publication. The author should also send the final version of the paper to the Managing Editor, who will forward a copy to the Providence office. Accepted electronically prepared manuscripts can be submitted via the web at \texttt{www.ams.org/submit-book-journal/}, sent via email to \texttt{pub-submit@ams.org} (Internet), or sent on diskette to the Electronic Prepress Department, American Mathematical Society, 201 Charles Street, Providence, RI 02904-2294 USA. When sending a manuscript electronically via email or diskette, please be sure to include a message indicating in which publication the paper has been accepted. No corrections will be accepted electronically. Authors must mark their changes on their proof copies and return them to the Providence office. Complete instructions on how to send files are included in the author package.

Electronic graphics. Comprehensive instructions on preparing graphics are available starting from \texttt{www.ams.org/jourhtml/authors.html}. A few of the major requirements are given here.

Submit files for graphics as EPS (Encapsulated PostScript) files. This includes graphics originated via a graphics application as well as scanned photographs or other computer-generated images. If this is not possible, TIFF files are acceptable as long as they can be opened in Adobe Photoshop or Illustrator. No matter what method was used to produce the graphic, it is necessary to provide a paper copy to the AMS.

Authors using graphics packages for the creation of electronic art should also avoid the use of any lines thinner than 0.5 points in width. Many graphics packages allow the user to specify a “hairline” for a very thin line. Hairlines often look acceptable when proofed on a typical laser printer. However, when produced on a high-resolution laser imagesetter, hairlines become nearly invisible and will be lost entirely in the final printing process.

Screens should be set to values between 15% and 85%. Screens which fall outside of this range are too light or too dark to print correctly. Variations of screens within a graphic should be no less than 10%.

AMS policy on making changes to articles after posting. Articles are posted to the AMS website individually after proof is returned from authors and before appearing in an issue. To preserve the integrity of electronically published articles, once an article is individually posted to the AMS website but not yet in an issue, changes cannot be made in place in the paper. However, an “Added after posting” section may be added to the paper right before the References when there is a critical error in the content of the paper. The “Added after posting” section gives the author an opportunity to correct this type of critical error before the article is put into an issue for printing and before it is then reposted with the issue. The “Added after posting” section remains a permanent part of the paper. The AMS does not keep author-related information, such as affiliation, current address, and email address, up to date after a paper is initially posted.

Once the article is assigned to an issue, even if the issue has not yet been posted to the AMS website, corrections may be made to the paper by submitting a traditional errata
Secure manuscript tracking on the Web. Authors can track their manuscripts through the AMS journal production process using the personal AMS ID and Article ID printed in the upper right-hand corner of the Consent to Publish form sent to each author who publishes in AMS journals. Access to the tracking system is available from www.ams.org/mstrack/. An explanation of each production step is provided on the web through links from the manuscript tracking screen. Questions can be sent to mcom-query@ams.org.

\TeX\ files available upon request. \TeX\ files are available upon request for authors by sending email to file-request@ams.org or by contacting the Electronic Prepress Department, American Mathematical Society, 201 Charles Street, Providence, RI 02904-2294 USA. The request should include the title of the paper, the name(s) of the author(s), the name of the publication in which the paper has or will appear, and the volume and issue numbers if known. The \TeX\ file will be sent to the author making the request after the article goes to the printer. If the requestor can receive Internet email, please include the email address to which the file should be sent. Otherwise please indicate a diskette format and postal address to which a disk should be mailed. Note: Because \TeX\ production at the AMS sometimes requires extra fonts and macros that are not yet publicly available, \TeX\ files cannot be guaranteed to run through the author’s version of \TeX\ without errors. The AMS regrets that it cannot provide support to eliminate such errors in the author’s \TeX\ environment.

Inquiries. Any inquiries concerning a paper that has been accepted for publication that cannot be answered via the manuscript tracking system mentioned above should be sent to mcom-query@ams.org or directly to the Electronic Prepress Department, American Mathematical Society, 201 Charles Street, Providence, RI 02904-2294 USA.

Editorial Committee

SUSANNE C. BRENNER, Center for Computation and Technology, Johnston Hall, Louisiana State University, Baton Rouge, LA 70803 USA; E-mail: brenner@math.lsu.edu

RONALD F. A. COOLS, Department of Computer Science, Katholieke Universiteit Leuven, Celestijnenlaan 200A, B-3001 Heverlee, Belgium; E-mail: ronald.cools@cs.kuleuven.ac.be

IGOR E. SHPARLINSKI, Department of Computing, Macquarie University, Sydney, New South Wales 2109, Australia; E-mail: igor@comp.mq.edu.au

CHI-WAN SHU, Chair. Applied Mathematics Division, Brown University, P.O. Box F, 182 George St., Providence, RI 02912-0001 USA; E-mail: mathcomp@dam.brown.edu

Board of Associate Editors

DAVID W. BOYD, Department of Mathematics, University of British Columbia, Vancouver, BC Canada V6T 1Z2; E-mail: boyd@math.ubc.ca

DANIELA CALVETTI, Department of Mathematics, Case Western Reserve University, Yost Hall, 10900 Euclid Ave., Cleveland, OH 44106; E-mail: daniela.calvetti@case.edu

ZHIMING CHEN, Institute of Computational Mathematics, Chinese Academy of Sciences, P.O. Box 2719, Beijing 100080, China; E-mail: zmchen@1sec.cc.ac.cn

BERNARDO COCKBURN, School of Mathematics, University of Minnesota, 206 Church Street SE, Minneapolis, MN 55455; E-mail: cockburn@math.umn.edu

ARJEH M. COHEN, Faculteit Wiskunde en Informatica, TU Eindhoven, Postbus 513, 5600 MB Eindhoven, Netherlands; E-mail: amc@win.tue.nl

JEAN-MARC COUVEIGNES, Departement de Mathematiques et Informatique, Universite Toulouse 2, 5, allee Antonio Machado, 31058 Toulouse Cedex 9, France; E-mail: couveig@univ-tlse2.fr

RICARDO G. DURAN, Department of Mathematics, University of Buenos Aires, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires, Argentina; E-mail: rduran@dm.uba.ar
<table>
<thead>
<tr>
<th>Authors</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peter Huggins, Bernd Sturmfels, Josephine Yu, and Debbie S. Yuster</td>
<td>The hyperdeterminant and triangulations of the 4-cube</td>
<td>1653</td>
</tr>
<tr>
<td>Peter Borwein, Ron Ferguson, and Michael J. Mossinghoff</td>
<td>Sign changes in sums of the Liouville function</td>
<td>1681</td>
</tr>
<tr>
<td>Shahar Golan</td>
<td>Equal moments division of a set</td>
<td>1695</td>
</tr>
<tr>
<td>Tadej Kotnik</td>
<td>Computational estimation of the constant $\beta(1)$ characterizing</td>
<td>1713</td>
</tr>
<tr>
<td></td>
<td>the order of $\zeta(1 + it)$</td>
<td></td>
</tr>
<tr>
<td>Scott Ahlgren</td>
<td>On the irreducibility of Hecke polynomials</td>
<td>1725</td>
</tr>
<tr>
<td>H. Kadiri</td>
<td>Short effective intervals containing primes in arithmetic</td>
<td>1733</td>
</tr>
<tr>
<td></td>
<td>progressions and the seven cubes problem</td>
<td></td>
</tr>
<tr>
<td>Patrick Costello and Michael Osborne</td>
<td>Periodicity of the parity of a partition function related to</td>
<td>1749</td>
</tr>
<tr>
<td></td>
<td>making change</td>
<td></td>
</tr>
<tr>
<td>A. Bostan, F. Morain, B. Salvy, and É. Schost</td>
<td>Fast algorithms for computing isogenies between elliptic curves</td>
<td>1755</td>
</tr>
<tr>
<td>Helen Avelin</td>
<td>Computations of Eisenstein series on Fuchsian groups</td>
<td>1779</td>
</tr>
<tr>
<td>Harald Meyer</td>
<td>Primitive central idempotents of finite group rings of</td>
<td></td>
</tr>
<tr>
<td></td>
<td>symmetric groups</td>
<td></td>
</tr>
<tr>
<td>Akinari Hoshi and Yūichi Rikuna</td>
<td>Rationality problem of three-dimensional purely monomial group</td>
<td>1801</td>
</tr>
<tr>
<td></td>
<td>actions: the last case</td>
<td></td>
</tr>
<tr>
<td>Maxime Augier and Shalom Eliahou</td>
<td>Parity-regular Steinhaus graphs</td>
<td>1831</td>
</tr>
<tr>
<td>Weiling Yang and Fuji Zhang</td>
<td>Links and cubic 3-polytopes</td>
<td>1841</td>
</tr>
<tr>
<td>Takeshi Goto and Yasuo Ohno</td>
<td>Odd perfect numbers have a prime factor exceeding 10^8</td>
<td>1859</td>
</tr>
<tr>
<td>K. G. Hare and C. J. Smyth</td>
<td>Corrigendum to “The monic integer transfinite diameter”</td>
<td>1869</td>
</tr>
</tbody>
</table>
MATHMATICS OF COMPUTATION
CONTENTS
Vol. 77, No. 263 July 2008

Douglas N. Arnold, Gerard Awanou, and Ragnar Winther, Finite
elements for symmetric tensors in three dimensions 1229
Yunqing Huang and Jinchao Xu, Superconvergence of quadratic finite
elements on mildly structured grids .. 1253
Yanping Chen, Superconvergence of mixed finite element methods for
optimal control problems .. 1269
J. Guzmán, Local and pointwise error estimates of the local discontinuous
Galerkin method applied to the Stokes problem 1293
Jaeun Ku, Weak coupling of solutions of first-order least-squares method . 1323
Qiya Hu, Shi Shu, and Jun Zou, A mortar edge element method with
nearly optimal convergence for three-dimensional Maxwell’s equations 1333
Ferenc Izsák, Davit Harutyunyan, and Jaap J.W. van der Vegt,
Implicit a posteriori error estimates for the Maxwell equations 1355
J. L. Guermond, Jie Shen, and Xiaofeng Yang, Error analysis of fully
discrete velocity-correction methods for incompressible flows 1387
Edward J. Fuselier, Sobolev-type approximation rates for divergence-free
and curl-free RBF interpolants ... 1407
Jan S. Hesthaven and Robert M. Kirby, Filtering in Legendre spectral
methods ... 1425
Zhen-Huan Teng, Modified equation for adaptive monotone difference
schemes and its convergent analysis .. 1453
Xiliang Lu, Ping Lin, and Jian-Guo Liu, Analysis of a sequential
regularization method for the unsteady Navier-Stokes equations 1467
Francisco Guillén-González and Juan Vicente Gutiérrez-Santacreu,
Unconditional stability and convergence of fully discrete schemes for 2D
viscous fluids models with mass diffusion 1495
J. Fontbona and S. Mélédard, A random space-time birth particle method
for 2d vortex equations with external field 1525
Peter Bürgisser, Felipe Cucker, and Martin Lotz, The probability that
a slightly perturbed numerical analysis problem is difficult 1559
C. Brezinski and M. Redivo-Zaglia, Rational extrapolation for the
PageRank vector .. 1585
J. S. Brauchart, Optimal logarithmic energy points on the unit sphere .. 1599
B. C. Carlson, Power series for inverse Jacobian elliptic functions 1615
Xuan-Yong Zhu and Wen-Feng Qi, On the distinctness of modular
reductions of maximal length sequences modulo odd prime powers .. 1623
J. E. Cremona, Unimodular integer circulants 1639
(Continued on inside back cover)