Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



Pointwise approximation of corner singularities for a singularly perturbed reaction-diffusion equation in an $ L$-shaped domain

Authors: Vladimir B. Andreev and Natalia Kopteva
Journal: Math. Comp. 77 (2008), 2125-2139
MSC (2000): Primary 65N06, 65N15, 65N50; Secondary 35B25
Published electronically: February 19, 2008
MathSciNet review: 2429877
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A singularly perturbed reaction-diffusion equation is posed in a two-dimensional $ L$-shaped domain $ \Omega$ subject to a continuous Dirchlet boundary condition. Its solutions are in the Hölder space $ C^{2/3}(\bar\Omega)$ and typically exhibit boundary layers and corner singularities. The problem is discretized on a tensor-product Shishkin mesh that is further refined in a neighboorhood of the vertex of angle $ 3\pi/2$. We establish almost second-order convergence of our numerical method in the discrete maximum norm, uniformly in the small diffusion parameter. Numerical results are presented that support our theoretical error estimate.

References [Enhancements On Off] (What's this?)

  • 1. V. B. Andreev, Grid approximations of nonsmooth solutions of differential equations, Differ. Uravn., 16 (1980), no. 7, 1172-1184 (Russian). MR 581768 (82g:65051)
  • 2. V. B. Andreev, On the accuracy of grid approximations for nonsmooth solutions of singularly perturbed reaction-diffusion equations in a square region, Differ. Uravn., 42 (2006), no. 7, 895-906 (Russian), translation in Differential Equations, 42 (2006), no. 7, 954-966. MR 2294140
  • 3. V. B. Andreev, Uniform grid approximation for nonsmooth solutions of a mixed problem for a singularly perturbed reaction-diffusion equation in a rectangular domain, in preparation.
  • 4. I.A. Blatov, Galerkin finite element method for elliptic quasilinear singularly perturbed boundary problems. I, Differ. Uravn., 28 (1992), 1168-1177 (Russian), translation in Differ. Equ., 28 (1992), 931-940. MR 1201213 (94a:65056)
  • 5. C. Clavero, J. L. Gracia, E. O'Riordan, A parameter robust numerical method for a two dimensional reaction-diffusion problem, Math. Comp., 74 (2005), 1743-1758. MR 2164094 (2006e:65192)
  • 6. G. M. Fichtenholz, Differential and integral calculus, Vol. I, Fizmatgiz, Moscow, 1962.
  • 7. P. Grisvard, Elliptic problems in nonsmooth domains, Pitman, Boston, 1985. MR 775683 (86m:35044)
  • 8. R. B. Kellogg, Corner singularities and singular perturbations, Ann. Univ. Ferrara, Sez. VII, 47 (2001), 177-206. MR 1897566 (2003c:35031)
  • 9. V. A. Kondrat'ev, Boundary value problems for elliptic equations in domains with conical or angular points, Trudy Moskov. Mat. Obšč., 16 (1967), 209-292 (Russian), translation in Trans. Moscow Math. Soc., 16 (1967), 227-313. MR 0226187 (37:1777)
  • 10. N. Kopteva, Maximum norm error analysis of a 2d singularly perturbed semilinear reaction-diffusion problem, Math. Comp., 76 (2007), 631-646. MR 2291831
  • 11. N. Kopteva and M. Stynes, Numerical analysis of a singularly perturbed nonlinear reaction-diffusion problem with multiple solutions, Appl. Numer. Math., 51 (2004), 273-288. MR 2091404 (2005e:65097)
  • 12. O. A. Ladyzhenskaya and N. N. Ural'tseva, Linear and quasilinear elliptic equations, Academic Press, New York, 1968. MR 0244627 (39:5941)
  • 13. J.M. Melenk, $ hp$-finite element methods for singular perturbations, Springer, 2002. MR 1939620 (2003i:65108)
  • 14. H.-G. Roos, M. Stynes and L. Tobiska, Numerical methods for singularly perturbed differential equations, Springer-Verlag, Berlin, 1996. MR 1477665 (99a:65134)
  • 15. A. A. Samarskii, Theory of difference schemes, Nauka, Moscow, 1989 (Russian), translation in A. A. Samarskii, The theory of difference schemes, Marcel Dekker, New York, 2001. MR 1196231 (93g:65004)
  • 16. A. A. Samarski and V. B. Andreev, Difference methods for elliptic equations, Nauka, Moscow, 1976 (Russian). MR 0502017 (58:19209a)
  • 17. A.H. Schatz and L.B. Wahlbin, On the finite element method for singularly perturbed reaction-diffusion problems in two and one dimensions, Math. Comp., 40 (1983), 47-89. MR 679434 (84c:65137)
  • 18. G. I. Shishkin, Grid approximation of singularly perturbed elliptic and parabolic equations, Ur. O. Ran, Ekaterinburg, 1992 (Russian).
  • 19. G. I. Shishkin, Grid approximation of singularly perturbed boundary value problems in a nonconvex domain with a piecewise-smooth boundary, Mat. Model., 11 (1999), no. 11, 75-90 (Russian). MR 1761699 (2001g:65133)
  • 20. E. A. Volkov, Differential properties of solutions of boundary value problems for the Laplace equation on polygons, Trudy Mat. Inst. Steklov, 77 (1965), 113-142 (Russian), translation in Proc. Steklov Inst. Math., 77 (1965), 127-159. MR 0192078 (33:305)
  • 21. E. A. Volkov, The method of composite regular nets for the Laplace equation on polygons, Trudy Mat. Inst. Steklov, 140 (1976), 68-102 (Russian), translation in Proc. Steklov Inst. Math., 140 (1979), 71-109. MR 0448945 (56:7250)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 65N06, 65N15, 65N50, 35B25

Retrieve articles in all journals with MSC (2000): 65N06, 65N15, 65N50, 35B25

Additional Information

Vladimir B. Andreev
Affiliation: Faculty of Computational Mathematics and Cybernetics, Moscow State University, Leninskie Gory, 119991, Moscow, Russia

Natalia Kopteva
Affiliation: Department of Mathematics and Statistics, University of Limerick, Limerick, Ireland

Keywords: Reaction-diffusion, singular perturbation, corner singularity, $L$-shaped domain, pointwise error estimate, Shishkin mesh, second order
Received by editor(s): April 27, 2007
Received by editor(s) in revised form: August 31, 2007
Published electronically: February 19, 2008
Additional Notes: This research was supported by Enterprise Ireland International Collaboration Programme grant IC/2006/8.
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society