A GILBERT-VARSHAMOV TYPE BOUND FOR EUCLIDEAN PACKINGS

GABRIELE NEBE AND CHAOPING XING

Abstract. This paper develops a method to obtain a Gilbert-Varshamov type bound for dense packings in the Euclidean spaces using suitable lattices. For the Leech lattice the obtained bounds are quite reasonable for large dimensions, better than the Minkowski-Hlawka bound, but not as good as the lower bound given by Keith Ball in 1992.

1. Introduction

It is a classical problem to find dense sphere packings in Euclidean space; see for instance [2, 3, 4, 7] for an introduction to this topic.

For a real $b > 0$, let A_b^m be the ball of radius b in \mathbb{R}^m defined by

$$ A_b^m := \{ x := (x_1, \ldots, x_m) \in \mathbb{R}^m : \|x\|^2 := \sum_{i=1}^{m} x_i^2 \leq b^2 \}. $$

Then the volume of A_b^m is equal to $V_m \cdot b^m$, where $V_m = \frac{\pi^{m/2}}{\Gamma(m/2+1)}$ denotes the volume of a unit ball in \mathbb{R}^m. A packing in \mathbb{R}^m is a set \mathcal{P} of points in \mathbb{R}^m such that the Euclidean distance of \mathcal{P},

$$ d(\mathcal{P}) := \inf_{u,v \in \mathcal{P}, u \neq v} d(u,v), $$

is positive. It is clear that all balls with radius $d(\mathcal{P})/2$ and centers being points of \mathcal{P} are not overlapping. Let $U(\mathcal{P})$ be the union of all such balls, i.e.,

$$ U(\mathcal{P}) = \{ x \in \mathbb{R}^m : \exists u \in \mathcal{P} \text{ such that } d(x,u) \leq d(\mathcal{P})/2 \}. $$

Then the density of \mathcal{P} is defined by

$$ \Delta(\mathcal{P}) = \limsup_{b \to \infty} \frac{\text{vol}(U(\mathcal{P}) \cap A_b^m)}{\text{vol}(A_b^m)}, $$

where $\text{vol}(\mathcal{T})$ denotes the volume of a subset \mathcal{T} in \mathbb{R}^m. It is clear that $\Delta(\mathcal{P}) \leq 1$. We are interested in dense packings, i.e., we want to find a packing with density close to the quantity

$$ \Delta_m := \limsup_{\mathcal{P}} \Delta(\mathcal{P}), $$

Received by the editor July 3, 2007 and, in revised form, October 12, 2007.

2000 Mathematics Subject Classification. Primary 11H31, 52C17, 11H71, 11H06.

The research of the second author was partially supported by the Singapore MoE Tier 1 grant RG60/07 and the National Scientific Research Project 973 of China 2004CB318000.

The second author is the corresponding author.
where \(P \) is extended over all packings in \(\mathbb{R}^m \). Sometimes, it is more convenient to convert \(\Delta_m \) into the center density which is defined by

\[
\delta_m := \frac{\Delta_m}{V_m}.
\]

The Gilbert-Varshamov (G-V, for short) bound is a benchmark for good codes in coding theory. The idea involved in the G-V bound can be employed for many other problems. In this paper, we use the idea to construct dense packings in \(\mathbb{R}^m \) by choosing a subset of certain lattice points. It turns out that the obtained G-V type bound is quite reasonable. For the orthogonal sum of copies of the Leech lattice, it is better than the Minkowski-Hlawka bound, but not as good as the lower bound given in [1]. Up to now no sphere packings have been described that beat our bounds. A table for densities for large dimensions divisible by 720 is given in this paper.

2. Gilbert-Varshamov Type Bound

In this section we fix a lattice \(L \) of dimension \(m \) in Euclidean space \(\mathbb{R}^m \) such that all norms in \(L \) are integers, i.e., \(||c||^2 \in \mathbb{Z} \) for all \(c \in L \). For a point \(c \in L \) and an integer \(k > 0 \), define the ball \(B_{L,k}(c) \) to be the set consisting of points in \(L \) with Euclidean distance from \(c \) at most \(\sqrt{k} \), i.e.,

\[
B_{L,k}(c) := \{ b \in L : ||b - c||^2 \leq k \}.
\]

It is clear that \(B_{L,k}(c) \) is a finite set and its cardinality, denoted by \(B_{L,k} \), is independent of its center \(c \). In fact, we have

\[
B_{L,k} = 1 + \sum_{i=1}^{k} S_{L,i},
\]

where \(S_{L,i} \) is the number of lattice points of norm \(i \) in \(L \).

One important invariant of \(L \) is its discriminant \(D \), defined as the determinant of a Gram matrix of \(L \), or equivalently as the square of the volume of a fundamental domain of \(L \) in \(\mathbb{R}^m \) (see [3]). It measures the number of lattice points contained in a unit ball.

Lemma 2.1. Let \(L \) be a lattice in \(\mathbb{R}^m \) with discriminant \(D \). Then

\[
\lim_{b \to \infty} \frac{B_{L,b}}{V_m b^{m/2}} = \frac{1}{\sqrt{D}},
\]

where \(V_m \) is the volume of the unit ball in \(\mathbb{R}^m \).

Proof. Clearly, \(\sqrt{D} \) is the volume of the Dirichlet domain

\[
D_L = \{ x \in \mathbb{R}^m : ||x|| < ||x - \ell|| \; \forall 0 \neq \ell \in L \}
\]

around 0. For a fixed \(b \), the \(B_{L,b} \) translates \(\ell + D_L \) with \(\ell \in B_{L,b}(0) \) tile a subset of volume \(B_{L,b}\sqrt{D} \) of \(\mathbb{R}^m \), which tends to be the ball around 0 with radius \(\sqrt{b} \) when \(b \) tends to infinity. \(\square \)

Theorem 2.2. Let \(L \subseteq \mathbb{R}^m \) be a lattice of discriminant \(D \), such that all norms in \(L \) are integral. Then for any integer \(r \geq 1 \), one has

\[
\Delta_m \geq \frac{1}{\sqrt{D}} \times \frac{1}{B_{L,r}} \times \left(\frac{\sqrt{r+1}}{2} \right)^m \times V_m,
\]

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
hence
\begin{equation}
\delta_m \geq \frac{1}{2m} \frac{\max_{r \geq 1} \left(\frac{(r+1)^{m/2}}{B_{L,r}} \right)}{\sqrt{D}}.
\end{equation}

Proof. For a sufficiently large integer $b > 0$ choose an arbitrary point c_1 from $B_{L,b}(0)$. Pick up a point c_2 from $B_{L,b}(0) \setminus B_{L,r}(c_1)$. Then pick up a point c_3 from $B_{L,b}(0) \setminus B_{L,r}(c_1) \cup B_{L,r}(c_2)$.

This procedure constructs a subset $C := \{c_1, \ldots, c_{M+1}\}$ of $B_{L,b}(0)$ with
\begin{equation*}
M := \left\lceil \frac{B_{L,b} - 1}{B_{L,r}} \right\rceil
\end{equation*}
such that
\begin{equation*}
c_i \in B_{L,b}(0) \setminus \bigcup_{j=1}^{i-1} B_{L,r}(c_j)
\end{equation*}
for any $1 \leq i \leq M + 1$. This is because the set $B_{L,b}(0) \setminus \bigcup_{j=1}^{i-1} B_{L,r}(c_j)$ is not empty due to the fact that
\begin{equation*}
|B_{L,b}(0) \setminus \bigcup_{j=1}^{i-1} B_{L,r}(c_j)| \geq |B_{L,b}(0)| - \left| \bigcup_{j=1}^{i-1} B_{L,r}(c_j) \right| \geq B_{L,b} - M \cdot B_{L,r} > 0.
\end{equation*}

Since norms in L are integral and $||c_i - c_j||^2 > r$ for $i \neq j$ by construction, any two distinct points in the set C have Euclidean distance at least $\sqrt{r+1}$. Hence the balls around distinct c_j with radius $\sqrt{r+1/2}$ are disjoint. When b tends to ∞ this yields
\begin{equation*}
\Delta_m \geq \lim_{b \to \infty} \frac{M}{V_m b^{m/2}} \times \left(\frac{\sqrt{r+1}}{2} \right)^m \times V_m
\end{equation*}
\begin{equation*}
= \lim_{b \to \infty} \frac{B_{L,b}}{V_m b^{m/2}} \times \frac{1}{B_{L,r}} \times \left(\frac{\sqrt{r+1}}{2} \right)^m \times V_m
\end{equation*}
\begin{equation*}
= \frac{1}{\sqrt{D}} \times \frac{1}{B_{L,r}} \times \left(\frac{\sqrt{r+1}}{2} \right)^m \times V_m.
\end{equation*}

The desired result follows. \hfill \Box

Remark 2.3. As r tends to infinity, the right hand side of the inequality \eqref{eq:2.2} tends to $\frac{1}{2m} \log_2(\Delta_m)$ yielding asymptotically the same bound as the Minkowski-Hlawka bound, $\frac{1}{m} \log_2(\Delta_m) \geq -1$. However, for smaller values of r the right hand side may be bigger, which yields a slight improvement of this bound.

3. Numerical Results

In applications one usually chooses orthogonally decomposable lattices
\begin{equation*}
L = L_1^{n_1} \perp L_2^{n_2} \perp \ldots \perp L_s^{n_s} \subseteq \mathbb{R}^m
\end{equation*}
of dimension $m = \sum_{i=1}^s n_i \dim(L_i)$ and discriminant $D = \prod_{i=1}^s D_i^{n_i}$, where D_i denotes the discriminant of L_i. We obtained good results by choosing
\begin{equation*}
L = \frac{1}{\sqrt{2}} A_{24}^{n_1} \perp \frac{1}{\sqrt{2}} A_2^{n_2} \perp \mathbb{Z}^{n_3}
\end{equation*}
with $m = 24n_1 + 2n_2 + n_3$, $0 \leq n_2 \leq 11$, $0 \leq n_3 \leq 1$ where $A_{24} \subseteq \mathbb{R}^{24}$ denotes the Leech lattice and A_2 the 2-dimensional hexagonal lattice. Then $D_1 = 2^{-24}$,
$D_2 = \frac{3}{4}$ and $D_3 = 1$, and so $\log_2(\frac{1}{\sqrt{3}}) = 12n_1 + n_2\alpha$ with $\alpha = (1 - \log_2(\sqrt{3}))$ and hence $\log_2(\delta_m) \geq b_0(m)$ where

$$b_0(24n_1 + 2n_2 + n_3)$$

$$= 12n_1 + \alpha n_2 + \max_{r \geq 1} \left((12n_1 + n_2 + \frac{n_3}{2}) \log_2 \left(\frac{r + 1}{4}\right) - \log_2(B_{L,r})\right)$$

(3.1)

$$\geq b_0(24n_1 + 2n_2 + n_3, r_0)$$

$$= 12n_1 + \alpha n_2 + (12n_1 + n_2 + \frac{n_3}{2}) \log_2 \left(\frac{r_0 + 1}{4}\right) - \log_2(B_{L,r_0})$$

for any integer $r_0 \geq 1$. The following table lists a few examples (truncated to the second decimal place).

<table>
<thead>
<tr>
<th>m</th>
<th>$b_0(m, r_0)$</th>
<th>r_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1440</td>
<td>3176.35</td>
<td>161</td>
</tr>
<tr>
<td>1443</td>
<td>3184.46</td>
<td>165</td>
</tr>
<tr>
<td>1446</td>
<td>3192.78</td>
<td>171</td>
</tr>
<tr>
<td>1449</td>
<td>3201.01</td>
<td>184</td>
</tr>
<tr>
<td>1452</td>
<td>3209.54</td>
<td>218</td>
</tr>
<tr>
<td>1455</td>
<td>3218.10</td>
<td>253</td>
</tr>
<tr>
<td>1458</td>
<td>3226.82</td>
<td>270</td>
</tr>
<tr>
<td>1461</td>
<td>3235.50</td>
<td>291</td>
</tr>
<tr>
<td>1464</td>
<td>3246.59</td>
<td>164</td>
</tr>
<tr>
<td>1467</td>
<td>3254.73</td>
<td>168</td>
</tr>
<tr>
<td>1470</td>
<td>3263.09</td>
<td>174</td>
</tr>
<tr>
<td>1473</td>
<td>3271.36</td>
<td>188</td>
</tr>
<tr>
<td>1476</td>
<td>3279.92</td>
<td>221</td>
</tr>
<tr>
<td>1479</td>
<td>3288.52</td>
<td>258</td>
</tr>
<tr>
<td>1482</td>
<td>3297.27</td>
<td>275</td>
</tr>
<tr>
<td>1485</td>
<td>3305.99</td>
<td>296</td>
</tr>
<tr>
<td>1488</td>
<td>3317.11</td>
<td>167</td>
</tr>
<tr>
<td>1491</td>
<td>3325.29</td>
<td>171</td>
</tr>
<tr>
<td>1494</td>
<td>3333.68</td>
<td>177</td>
</tr>
<tr>
<td>1497</td>
<td>3341.98</td>
<td>191</td>
</tr>
<tr>
<td>1500</td>
<td>3350.59</td>
<td>225</td>
</tr>
<tr>
<td>1503</td>
<td>3359.21</td>
<td>262</td>
</tr>
<tr>
<td>1506</td>
<td>3368.01</td>
<td>279</td>
</tr>
<tr>
<td>1509</td>
<td>3376.75</td>
<td>301</td>
</tr>
<tr>
<td>1512</td>
<td>3387.90</td>
<td>170</td>
</tr>
<tr>
<td>1515</td>
<td>3396.12</td>
<td>174</td>
</tr>
<tr>
<td>1518</td>
<td>3404.55</td>
<td>180</td>
</tr>
<tr>
<td>1521</td>
<td>3412.89</td>
<td>194</td>
</tr>
<tr>
<td>1524</td>
<td>3421.53</td>
<td>229</td>
</tr>
<tr>
<td>1527</td>
<td>3430.19</td>
<td>266</td>
</tr>
<tr>
<td>1530</td>
<td>3439.02</td>
<td>284</td>
</tr>
<tr>
<td>1533</td>
<td>3447.80</td>
<td>306</td>
</tr>
<tr>
<td>1536</td>
<td>3458.97</td>
<td>173</td>
</tr>
<tr>
<td>1539</td>
<td>3467.23</td>
<td>177</td>
</tr>
<tr>
<td>1542</td>
<td>3475.70</td>
<td>183</td>
</tr>
<tr>
<td>1545</td>
<td>3484.07</td>
<td>197</td>
</tr>
</tbody>
</table>
and hence
\[\log_2(\delta_m) \geq \text{ball}(m) = mh(m) + \log_2(m - 1) \]

with
\[mh(m) = \log_2(\zeta(m)) + \log_2((m/2)! + 1 - m + (m/2) \log_2(\pi)). \]

For dimensions \(m = 720n \) we compare our bounds \(b_1(m, r_1) \) and \(b_2(m, r_2) \) obtained by taking \(L = \frac{1}{\sqrt{2}} \Lambda_{24}^{30n} \), respectively \(L = \frac{1}{\sqrt{2}} \Lambda_{72}^{10n} \) (for some putative extremal even unimodular lattice \(\Lambda_2 \)) and choosing suitable integers \(r_1, r_2 \geq 1 \) to these two bounds. This shows that our lower bounds are better than the Minkowski-Hlawka bound, but not as good as the ones obtained by Keith Ball. Our construction is explicitly described, though it is not of polynomial-time, while the other two bounds, by Minkowski-Hlawka and Ball, are nonconstructive.

The results (rounded to 10 decimal places) were calculated with MAGMA [1] using the modular forms package.
\begin{tabular}{|c|c|c|c|c|c|}
\hline
\(m\) & \(b_1(m, r_1)\) & \(r_1\) & \(b_2(m, r_2)\) & \(r_2\) & \(mh(m)\) & \(\text{ball}(m)\) \\
\hline
10080 & 36324.20987 & 1282 & 36325.08702 & 972 & 36321.76029 & 36335.05935 \\
10800 & 39455.54308 & 1379 & 39457.02261 & 1044 & 39453.10876 & 39466.50737 \\
11520 & 42621.52459 & 1477 & 42623.00632 & 1115 & 42619.10439 & 42632.59612 \\
12240 & 45819.98605 & 1574 & 45821.46984 & 1188 & 45817.57900 & 45831.15820 \\
12960 & 49049.01471 & 1672 & 49050.50042 & 1260 & 49046.61995 & 49060.28161 \\
13680 & 52306.91065 & 1771 & 52308.39816 & 1332 & 52304.52742 & 52318.26710 \\
14400 & 55592.15318 & 1869 & 55593.64235 & 1404 & 55589.78081 & 55603.59449 \\
15120 & 58903.37385 & 1968 & 58904.86459 & 1477 & 58901.01173 & 58914.89580 \\
\hline
\end{tabular}

A MAGMA program producing this table is available from [6].

\section*{References}

\textsc{Lehrstuhl D f"{u}r Mathematik, RWTH Aachen, Germany}

\textit{E-mail address:} nebe@math.rwth-aachen.de

\textsc{Division of Mathematical Science, School of Physical \& Mathematical Sciences, Nanyang Technological University, Singapore 637616}

\textit{E-mail address:} xingcp@ntu.edu.sg