Skip to Main Content

Mathematics of Computation

Published by the American Mathematical Society since 1960 (published as Mathematical Tables and other Aids to Computation 1943-1959), Mathematics of Computation is devoted to research articles of the highest quality in computational mathematics.

ISSN 1088-6842 (online) ISSN 0025-5718 (print)

The 2020 MCQ for Mathematics of Computation is 1.78.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Prime factors of consecutive integers
HTML articles powered by AMS MathViewer

by Mark Bauer and Michael A. Bennett PDF
Math. Comp. 77 (2008), 2455-2459 Request permission

Abstract:

This note contains a new algorithm for computing a function $f(k)$ introduced by Erdős to measure the minimal gap size in the sequence of integers at least one of whose prime factors exceeds $k$. This algorithm enables us to show that $f(k)$ is not monotone, verifying a conjecture of Ecklund and Eggleton.
References
  • R. D. Carmichael, On the numerical factors of the arithmetic forms $\alpha ^n\pm \beta ^n$, Ann. of Math. (2) 15 (1913/14), no. 1-4, 30–48. MR 1502458, DOI 10.2307/1967797
  • E. F. Ecklund Jr. and R. B. Eggleton, Prime factors of consecutive integers, Amer. Math. Monthly 79 (1972), 1082–1089. MR 318050, DOI 10.2307/2317422
  • R. S. D. Thomas and H. C. Williams (eds.), Proceedings of the Manitoba Conference on Numerical Mathematics, University of Manitoba, Department of Computer Science, Winnipeg, Man., 1971. Held at the University of Manitoba, Winnipeg, Man., October 7–9, 1971. MR 0329183
  • E. F. Ecklund Jr., R. B. Eggleton, and J. L. Selfridge, Consecutive integers all of whose prime factors belong to a given set, Proceedings of the Third Manitoba Conference on Numerical Mathematics (Winnipeg, Man., 1973) Utilitas Math., Winnipeg, Man., 1974, pp. 161–162. MR 0463097
  • R. B. Eggleton and J. L. Selfridge, Consecutive integers with no large prime factors, J. Austral. Math. Soc. Ser. A 22 (1976), no. 1, 1–11. MR 439778, DOI 10.1017/s1446788700013318
  • P. Erdös, On consecutive integers, Nieuw Arch. Wisk. (3) 3 (1955), 124–128. MR 73628
  • P. Erdős and R. L. Graham, Old and new problems and results in combinatorial number theory, Monographies de L’Enseignement Mathématique [Monographs of L’Enseignement Mathématique], vol. 28, Université de Genève, L’Enseignement Mathématique, Geneva, 1980. MR 592420
  • Richard K. Guy, Unsolved problems in number theory, 3rd ed., Problem Books in Mathematics, Springer-Verlag, New York, 2004. MR 2076335, DOI 10.1007/978-0-387-26677-0
  • D. H. Lehmer, An extended theory of Lucas’ functions, Ann. of Math. (2) 31 (1930), no. 3, 419–448. MR 1502953, DOI 10.2307/1968235
  • D. H. Lehmer, On a problem of Störmer, Illinois J. Math. 8 (1964), 57–79. MR 158849
  • D. H. Lehmer, The prime factors of consecutive integers, Amer. Math. Monthly 72 (1965), no. 2, 19–20. MR 171739, DOI 10.2307/2313306
  • R. Rankin. The difference between consecutive prime numbers. J. London Math. Soc. 13 (1938), 242–247.
  • J. Schur. Einege Sätze über Primzahlen mit Anwendung auf Irreduzibilitätsfragen. S.-B. Deutsch. Akad. Wiss Berlin Kl. Math. Phys. Tech. 23 (1929), 1–24.
  • T. N. Shorey, On gaps between numbers with a large prime factor. II, Acta Arith. 25 (1973/74), 365–373. MR 344201, DOI 10.4064/aa-25-4-365-373
  • J. J. Sylvester. On arithmetical series. Messenger Math. 21 (1892), 1–19, 87–120.
  • W. R. Utz, A conjecture of Erdős concerning consecutive integers, Amer. Math. Monthly 68 (1961), 896–897. MR 130849, DOI 10.2307/2311692
  • H. C. Williams, Solving the Pell equation, Number theory for the millennium, III (Urbana, IL, 2000) A K Peters, Natick, MA, 2002, pp. 397–435. MR 1956288
Similar Articles
  • Retrieve articles in Mathematics of Computation with MSC (2000): 11N25, 11D09
  • Retrieve articles in all journals with MSC (2000): 11N25, 11D09
Additional Information
  • Mark Bauer
  • Affiliation: Department of Mathematics, University of Calgary, Calgary AB
  • Email: mbauer@math.ucalgary.ca
  • Michael A. Bennett
  • Affiliation: Department of Mathematics, University of British Columbia, Vancouver BC
  • MR Author ID: 339361
  • Email: bennett@math.ubc.ca
  • Received by editor(s): March 14, 2007
  • Published electronically: May 20, 2008
  • Additional Notes: The authors were supported in part by grants from NSERC
  • © Copyright 2008 American Mathematical Society
    The copyright for this article reverts to public domain 28 years after publication.
  • Journal: Math. Comp. 77 (2008), 2455-2459
  • MSC (2000): Primary 11N25; Secondary 11D09
  • DOI: https://doi.org/10.1090/S0025-5718-08-02134-0
  • MathSciNet review: 2429894