Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Monotonicity of some functions involving the gamma and psi functions


Author: Stamatis Koumandos
Journal: Math. Comp. 77 (2008), 2261-2275
MSC (2000): Primary 33B15; Secondary 26D20, 26D15
DOI: https://doi.org/10.1090/S0025-5718-08-02140-6
Published electronically: May 14, 2008
MathSciNet review: 2429884
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ L(x):=x-\frac{\Gamma(x+t)}{\Gamma(x+s)}\,x^{s-t+1}$, where $ \Gamma(x)$ is Euler's gamma function. We determine conditions for the numbers $ s,\,t$ so that the function $ \Phi(x):=-\frac{\Gamma(x+s)}{\Gamma(x+t)}\,x^{t-s-1}\,L^{\prime\prime}(x)$ is strongly completely monotonic on $ (0,\,\infty)$. Through this result we obtain some inequalities involving the ratio of gamma functions and provide some applications in the context of trigonometric sum estimation. We also give several other examples of strongly completely monotonic functions defined in terms of $ \Gamma$ and $ \psi:=\Gamma^{\prime}/\Gamma$ functions. Some limiting and particular cases are also considered.


References [Enhancements On Off] (What's this?)

  • 1. M. Abramowitz and I. A. Stegun (Eds), Handbook of Mathematical Functions with formulas, Graphs and Mathematical Tables, Dover, New York, 1965. MR 1225604 (94b:00012)
  • 2. H. Alzer, On some inequalities for the gamma and psi functions. Math. Comp. 66 , no. 217, (1997) 373-389. MR 1388887 (97e:33004)
  • 3. H. Alzer, C. Berg and S. Koumandos, On a conjecture of Clark and Ismail. J. Approx. Theory 134, (2005), no. 1, 102-113. MR 2137558 (2006c:33003)
  • 4. H. Alzer, Sharp inequalities for the digamma and polygamma functions. Forum Math. 16 (2004), 181-221. MR 2039096 (2005d:33003)
  • 5. H. Alzer and C. Berg, Some classes of completely monotonic functions, II. Ramanujan J. 11, (2006), 225-248. MR 2267677 (2007k:33001)
  • 6. H. Alzer and A. Z. Grinshpan, Inequalities for gamma and $ q$-gamma functions. J. Approx. Theory 144 (2007), no. 1, 67-83. MR 2287377 (2007m:33004)
  • 7. G. D. Anderson, R. W. Barnard, K. C. Richards, M. K. Vamanamurthy, and M. Vuorinen, Inequalities for zero-Balanced hypergeometric functions. Trans. Amer. Math. Soc. 347, no. 5, (1995), 1713-1723. MR 1264800 (95m:33002)
  • 8. G. E. Andrews, R. Askey, and R. Roy, Special functions, Cambridge University Press, Cambridge, 1999. MR 1688958 (2000g:33001)
  • 9. N. Batir, An interesting double inequality for Euler's gamma function. JIPAM J. Inequal. Pure Appl. Math. 5 (4) (2004) Article 97. MR 2112450 (2005h:33001)
  • 10. N. Batir, Some new inequalities for Gamma and polygamma functions. JIPAM J. Inequal. Pure Appl. Math. 6 (4) (2005) Article 103. MR 2178284 (2006k:33001)
  • 11. N. Batir, On some properties of digamma and polygamma functions. J. Math. Anal. Appl. 328 (2007) 452-465. MR 2285562
  • 12. J. Bustoz and M. E. H. Ismail, On gamma function inequalities. Math. Comp., 47, no. 176 (1986), 659-667. MR 856710 (87m:33002)
  • 13. J. Dubourdieu, Sur un théorème de M. S. Bernstein relatif á la transformation de Laplace-Stieltjes. Compositio Math. 7 (1939), 96-111. MR 0000436 (1:73h)
  • 14. N. Elezović, C.  Giordano and J.  Pecarić, The best bounds in Gautschi's inequality, Math. Inequal. Appl. 3 (2000), no. 2, 239-252. MR 1749300 (2001g:33001)
  • 15. W. Gautschi, Some elementary inequalities relating to the gamma and incomplete gamma function. J. Math. Phys. 38, (1959), 77-81. MR 0103289 (21:2067)
  • 16. C.  Giordano, A. Laforgia and J.  Pecarić, Unified treatment of Gautschi-Kershaw type inequalities for the gamma function. J. Comp. Appl. Math 99, (1998), 167-175. MR 1662692 (99k:33004)
  • 17. A. Z. Grinshpan and M. E. H. Ismail, Completely monotonic functions involving the gamma and $ q$-gamma functions. Proc. Amer. Math. Soc. 134 (2006), no. 4, 1153-1160. MR 2196051 (2006i:33003)
  • 18. H. van Haeringen, Completely monotonic and related functions. J. Math. Anal. Appl. 204 (1996), 389-408. MR 1421454 (97j:26010)
  • 19. D. Kershaw, Some extensions of W. Gautschi's inequalities for the gamma function. Math. Comp. 41, no. 164, (1983), 607-611. MR 717706 (84m:33003)
  • 20. S. Koumandos, Remarks on some completely monotonic functions. J. Math. Anal. Appl., 324 (2006), no. 2, 1458-1461. MR 2266574 (2007i:26017)
  • 21. S. Koumandos and S. Ruscheweyh, Positive Gegenbauer polynomial sums and applications to starlike functions. Constr. Approx., 23 (2006), no. 2, 197-210. MR 2186305 (2007b:42001)
  • 22. S. Koumandos and S. Ruscheweyh, On a conjecture for trigonometric sums and starlike functions. J. Approx. Theory, 149, no. 1, (2007), 42-58.
  • 23. Feng Qi, Monotonicity and logarithmic convexity for a class of elementary functions involving the exponential function, preprint.
  • 24. Feng Qi, A completely monotonic function involving divided differences of psi and polygamma functions and an application, preprint.
  • 25. S. -L.  Qiu and M.  Vuorinen, Some properties of the gamma and psi functions, with applications, Math. Comp. 74 (2005), 723-742. MR 2114645 (2005i:33002)
  • 26. S. Y. Trimble, Jim Wells, and F.T. Wright, Superadditive functions and a statistical application, SIAM J. Math. Anal., 20, no. 5, (1989), 1255-1259. MR 1009357 (91a:26019)
  • 27. D. V. Widder, The Laplace transform, Princeton University Press, Princeton, 1946. MR 0005923 (3:232d)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 33B15, 26D20, 26D15

Retrieve articles in all journals with MSC (2000): 33B15, 26D20, 26D15


Additional Information

Stamatis Koumandos
Affiliation: Department of Mathematics and Statistics, University of Cyprus, P. O. Box 20537, 1678 Nicosia, Cyprus
Email: skoumand@ucy.ac.cy

DOI: https://doi.org/10.1090/S0025-5718-08-02140-6
Keywords: Gamma function, psi function, completely monotonic functions
Received by editor(s): June 5, 2007
Published electronically: May 14, 2008
Article copyright: © Copyright 2008 American Mathematical Society

American Mathematical Society