Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Well-balanced schemes for conservation laws with source terms based on a local discontinuous flux formulation


Authors: Kenneth Hvistendahl Karlsen, Siddhartha Mishra and Nils Henrik Risebro
Journal: Math. Comp. 78 (2009), 55-78
MSC (2000): Primary 35L65, 74S10, 65M12
DOI: https://doi.org/10.1090/S0025-5718-08-02117-0
Published electronically: September 17, 2008
MathSciNet review: 2448697
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We propose and analyze a finite volume scheme of the Godunov type for conservation laws with source terms that preserve discrete steady states. The scheme works in the resonant regime as well as for problems with discontinuous flux. Moreover, an additional modification of the scheme is not required to resolve transients, and solutions of nonlinear algebraic equations are not involved. Our well-balanced scheme is based on modifying the flux function locally to account for the source term and to use a numerical scheme especially designed for conservation laws with discontinuous flux. Due to the difficulty of obtaining $ BV$ estimates, we use the compensated compactness method to prove that the scheme converges to the unique entropy solution as the discretization parameter tends to zero. We include numerical experiments in order to show the features of the scheme and how it compares with a well-balanced scheme from the literature.


References [Enhancements On Off] (What's this?)

  • 1. Adimurthi, J. Jaffre and G. D.Veerappa Gowda.
    Godunov type methods for scalar conservation laws with flux function discontinuous in the space variable.
    SIAM J. Numer. Anal., 42 (1):179-208, 2004. MR 2051062 (2005c:65066)
  • 2. Adimurthi, Siddhartha Mishra and G. D.Veerappa Gowda.
    Optimal entropy solutions for conservation laws with discontinuous flux functions.
    J. Hyperbolic Differ. Equ., 2 (4):1-56, 2005. MR 2195983 (2007g:35144)
  • 3. Adimurthi, S. Mishra, and G. D. V. Gowda.
    Existence and stability of entropy solutions for a conservation law with discontinuous non-convex fluxes.
    Netw. Heterog. Media, 2(1):127-157 (electronic), 2007. MR 2291815
  • 4. F. Bachmann and J. Vovelle.
    Existence and uniqueness of entropy solution of scalar conservation laws with a flux function involving discontinuous coefficients.
    Comm. Partial Differential Equations, 31(1-3):371-395, 2006. MR 2209759 (2008b:35170)
  • 5. D. S. Bale, R. J. Leveque, S. Mitran, and J. A. Rossmanith.
    A wave propagation method for conservation laws and balance laws with spatially varying flux functions.
    SIAM J. Sci. Comput., 24(3):955-978 (electronic), 2002. MR 1950520 (2004a:65098)
  • 6. R. Botchorishvili, B. Perthame, and A. Vasseur.
    Equilibrium schemes for scalar conservation laws with stiff sources.
    Math. Comp., 72(241):131-157 (electronic), 2003. MR 1933816 (2003h:65104)
  • 7. G.-Q. Chen.
    Compactness methods and nonlinear hyperbolic conservation laws.
    In Some current topics on nonlinear conservation laws, volume 15 of AMS/IP Stud. Adv. Math., pages 33-75. Amer. Math. Soc., Providence, RI, 2000. MR 1767623 (2001f:35249)
  • 8. X. Ding, G.-Q. Chen and P. Luo.
    Convergence of the Lax-Friedrichs scheme for isentropic gas dynamics.
    Acta. Math. Sci. 5, 483-500, 1985 (in English), 7, 467-480, 1987 (in Chinese). MR 943646 (90b:76001)
  • 9. R. J. DiPerna.
    Convergence of approximate solutions to conservation laws.
    Arch. Rational Mech. Anal., 82(1):27-70, 1983. MR 684413 (84k:35091)
  • 10. T. Gimse and N. H. Risebro.
    Solution of the Cauchy problem for a conservation law with a discontinuous flux function.
    SIAM Journal on Mathematical Analysis, 23(3):635-648, 1992. MR 1158825 (93e:35070)
  • 11. L. Gosse and A.-Y. Leroux.
    Un schéma-équilibre adapté aux lois de conservation scalaires non-homogènes.
    C. R. Acad. Sci. Paris Sér. I Math., 323(5):543-546, 1996. MR 1408992 (97i:35112)
  • 12. L. Gosse.
    Localization effects and measure source terms in numerical schemes for balance laws.
    Math. Comp., 71(238):553-582 (electronic), 2002. MR 1885615 (2003e:65147)
  • 13. J. M. Greenberg and A. Y. Leroux.
    A well-balanced scheme for the numerical processing of source terms in hyperbolic equations.
    SIAM J. Numer. Anal., 33(1):1-16, 1996. MR 1377240 (97c:65144)
  • 14. K. H. Karlsen, N. H. Risebro, and J. D. Towers.
    $ L^1$ stability for entropy solutions of nonlinear degenerate parabolic convection-diffusion equations with discontinuous coefficients.
    Skr. K. Nor. Vidensk. Selsk., (3):1-49, 2003. MR 2024741 (2004j:35149)
  • 15. K. H. Karlsen, N. H. Risebro, and J. D. Towers.
    Front tracking for scalar balance equations.
    J. Hyperbolic Differ. Equ., 1(1):115-148, 2004. MR 2052473 (2005d:35156)
  • 16. K. H. Karlsen and J. D. Towers.
    Convergence of the Lax-Friedrichs scheme and stability for conservation laws with a discontinous space-time dependent flux.
    Chinese Ann. Math. Ser. B, 25(3):287-318, 2004. MR 2086124 (2005h:65145)
  • 17. K. H. Karlsen, S. Mishra, and N. H. Risebro.
    Convergence of finite volume schemes for triangular systems of conservation laws.
    Submitted, 2006.
  • 18. C. Klingenberg and N. H. Risebro.
    Convex conservation laws with discontinuous coefficients. Existence, uniqueness and asymptotic behavior.
    Comm. Partial Differential Equations, 20(11-12):1959-1990, 1995. MR 1361727 (96i:35082)
  • 19. R. J. LeVeque.
    Finite volume methods for hyperbolic problems.
    Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge, 2002. MR 1925043 (2003h:65001)
  • 20. Y. Lu.
    Hyperbolic conservation laws and the compensated compactness method, volume 128 of Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics.
    Chapman & Hall/CRC, Boca Raton, FL, 2003. MR 1936672 (2004b:35223)
  • 21. S. Mishra.
    Convergence of upwind finite difference schemes for a scalar conservation law with indefinite discontinuities in the flux function.
    SIAM J. Numer. Anal., 43(2):559-577 (electronic), 2005. MR 2177880 (2006g:65131)
  • 22. S. Mishra.
    Analysis and Numerical approximation of conservation laws with discontinuous coefficients
    Ph.D. Thesis, Indian Institute of Science, Bangalore, 2005.
  • 23. F. Murat.
    L'injection du cône positif de $ {H}\sp{-1}$ dans $ {W}\sp{-1,\,q}$ est compacte pour tout $ q<2$.
    J. Math. Pures Appl. (9), 60(3):309-322, 1981. MR 633007 (83b:46045)
  • 24. A. Noussair.
    Riemann problem with nonlinear resonance effects and well-balanced Godunov scheme for shallow fluid flow past an obstacle.
    SIAM J. Numer. Anal., 39(1):52-72 (electronic), 2001. MR 1860716 (2002h:35182)
  • 25. L. Tartar.
    Compensated compactness and applications to partial differential equations.
    In Nonlinear analysis and mechanics: Heriot-Watt Symposium, Vol. IV, pages 136-212. Pitman, Boston, Mass., 1979. MR 584398 (81m:35014)
  • 26. L. Tartar.
    The compensated compactness method applied to systems of conservation laws.
    In Systems of nonlinear partial differential equations (Oxford, 1982), volume 111 of NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., pages 263-285. Reidel, Dordrecht, 1983. MR 725524 (85e:35079)
  • 27. J. D. Towers.
    Convergence of a difference scheme for conservation laws with a discontinuous flux.
    SIAM J. Numer. Anal., 38(2):681-698 (electronic), 2000. MR 1770068 (2001f:65098)
  • 28. J. D. Towers.
    A difference scheme for conservation laws with a discontinuous flux: The nonconvex case.
    SIAM J. Numer. Anal., 39(4):1197-1218 (electronic), 2001. MR 1870839 (2002k:65131)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 35L65, 74S10, 65M12

Retrieve articles in all journals with MSC (2000): 35L65, 74S10, 65M12


Additional Information

Kenneth Hvistendahl Karlsen
Affiliation: Centre of Mathematics for Applications (CMA), University of Oslo, P.O. Box 1053, Blindern, N–0316 Oslo, Norway
Email: kennethk@math.uio.no

Siddhartha Mishra
Affiliation: Centre of Mathematics for Applications (CMA) , University of Oslo, P.O. Box 1053, Blindern, N–0316 Oslo, Norway
Email: siddharm@cma.uio.no

Nils Henrik Risebro
Affiliation: Centre of Mathematics for Applications (CMA), University of Oslo, P.O. Box 1053, Blindern, N–0316 Oslo, Norway
Email: nilshr@math.uio.no

DOI: https://doi.org/10.1090/S0025-5718-08-02117-0
Keywords: Conservation law, discontinuous solution, source term, finite volume scheme, well-balanced scheme, convergence, compensated compactness method
Received by editor(s): November 9, 2006
Received by editor(s) in revised form: October 10, 2007
Published electronically: September 17, 2008
Additional Notes: The third author was supported in part by an Outstanding Young Investigators Award from the Research Council of Norway.
Article copyright: © Copyright 2008 American Mathematical Society

American Mathematical Society