A STATISTICAL RELATION OF ROOTS OF A POLYNOMIAL IN DIFFERENT LOCAL FIELDS

YOSHIYUKI KITAOKA

Abstract. Let \(f(x) \) be a monic polynomial in \(\mathbb{Z}[x] \). We observe a statistical relation of roots of \(f(x) \) in different local fields \(\mathbb{Q}_p \), where \(f(x) \) decomposes completely. Based on this, we propose several conjectures.

1. Introduction and conjectures

Let \(n \) be an odd natural number, and consider prime numbers \(p \) such that \(p - 1 \) is divisible by \(n \). Then the sum of \(n \)-th roots of unity in \((\mathbb{Z}/p\mathbb{Z})^\times \) is divisible by \(p \), and the quotient \(s(p) \) lies in the interval \([1, n - 2]\). In the previous paper ([1]), we proposed a few conjectures on the distribution of \(s(p) \).

In this paper, we give a comprehensive viewpoint. For a polynomial

\[
f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0 \in \mathbb{Z}[x],
\]

we put

\[\text{Spl}(f) = \{ p \mid f(x) \mod p \text{ is completely decomposable} \},\]

where \(p \) denotes prime numbers. Let \(r_1, \ldots, r_n \) \((r_i \in \mathbb{Z}, 0 \leq r_i \leq p - 1)\) be solutions of \(f(x) \equiv 0 \mod p \) for \(p \in \text{Spl}(f) \); then \(a_{n-1} + \sum r_i \equiv 0 \mod p \) is clear. Thus there exists an integer \(C_p(f) \) such that

\[
a_{n-1} + \sum_{i=1}^{n} r_i = C_p(f)p.
\]

We stress that the local solutions are supposed to satisfy

\[
0 \leq r_i \leq p - 1 \quad (r_i \in \mathbb{Z}).
\]

To survey the situation, the proofs of the following will be gathered in the next section.

Proposition 1.1. Let \(f(x) = x + a \) \((a \in \mathbb{Z})\); then we have, for primes \(p \) with finitely many possible exceptions,

\[
C_p(f) = \begin{cases}
1 & \text{if } a > 0, \\
0 & \text{if } a \leq 0.
\end{cases}
\]

The range of \(C_p(f) \) for a general case is given by

Received by the editor May 7, 2007 and, in revised form, December 10, 2007.
2000 Mathematics Subject Classification. Primary 11K99, 11C08, 11Y05.
Key words and phrases. Statistics, roots of polynomial, local field.

The author was partially supported by Grant-in-Aid for Scientific Research (C), The Ministry of Education, Science, Sports and Culture.
Proposition 1.2. Suppose that \(f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0 \in \mathbb{Z}[x] \) does not have a linear factor in \(\mathbb{Q}[x] \). Then we have, for \(p \in \text{Spl}(f) \),
\begin{equation}
1 \leq C_p(f) \leq n - 1
\end{equation}
except finitely many possible primes.

Remark 1.3. We have chosen the local solutions under the condition (1.3). When we adopt the condition \(-1/2 \leq r_i/p < 1/2\), we have
\[C_p(x + a) = 0 \]
for any prime \(p (> |a|) \). Although it may seem desirable, in return, we lose our good expectation in Section 4.

The following is the second exceptional case where we can evaluate \(C_p(f) \) explicitly.

Theorem 1.4. Let \(n \) be a natural number and let
\[f(x) = \sum_{i=0}^{2n} a_i x^i \in \mathbb{Z}[x] \]
be a monic polynomial such that (i) \(f(x) \) does not have a linear factor in \(\mathbb{Q}[x] \) and (ii) there are polynomials \(f_1(x), f_2(x) \) such that \(f(x) = f_1(f_2(x)) \) with \(\deg f_2(x) = 2 \).
Then we have
\begin{equation}
C_p(f) = n \left(= \frac{1}{2} \deg f(x) \right)
\end{equation}
for primes \(p \in \text{Spl}(f) \) with finitely many possible exceptions.

Let \(f(x) \) be a monic polynomial in \(\mathbb{Z}[x] \). To study the distribution of the values \(C_p(f) \), we put, for \(1 \leq c \leq \deg f(x) - 1 \) and a positive number \(X \),
\begin{align*}
Pr(c,f,X) & = \frac{\#\{p \in \text{Spl}(f) \mid p \leq X, C_p(f) = c\}}{\#\{p \in \text{Spl}(f) \mid p \leq X\}}, \\
\mu(f,X) & = \frac{\sum_{p \in \text{Spl}(f), p \leq X} C_p(f)}{\#\{p \in \text{Spl}(f) \mid p \leq X\}}, \\
\sigma^2(f,X) & = \frac{\sum_{p \in \text{Spl}(f), p \leq X} C_p(f)^2}{\#\{p \in \text{Spl}(f) \mid p \leq X\}} - \mu(f,X)^2.
\end{align*}

Let us give one more definition.

Definition 1.5. Let \(f(x) \) be a monic polynomial of \(\deg f(x) \geq 2 \) in \(\mathbb{Z}[x] \); then there are monic polynomials \(f_1(x), f_2(x) \in \mathbb{Z}[x] \) which satisfy \(f(x) = f_1(f_2(x)) \) and \(\deg f_2(x) \geq 2 \). We call the minimum among \(\deg f_2(x) \) the reduced degree of \(f(x) \), and denote it by \(rd(f) \).

The reduced degree of the polynomial in Theorem 1.4 is 2, and the reduced degree of \(x^n - a \) is the least prime divisor of \(n \). By definition, the reduced degree is greater than 1, and the reduced degree of a polynomial of prime degree \(p \) is \(p \). Using this notation, the theorem above is rephrased as follows.
Corollary 1.6. Let \(f(x) \in \mathbb{Z}[x] \) be a monic polynomial of \(\text{rd}(f) = 2 \) and suppose that it does not have a linear factor in \(\mathbb{Q}[x] \). Then we have
\[
\lim_{X \to \infty} \Pr(c, f, X) = \begin{cases}
1 & \text{if } c = \frac{1}{2} \deg f(x), \\
0 & \text{otherwise},
\end{cases}
\]
\[
\lim_{X \to \infty} \mu(f, X) = \frac{1}{2} \deg f(x),
\]
\[
\lim_{X \to \infty} \sigma^2(f, X) = 0.
\]

This case seems exceptional.

Now we propose a conjecture based on data in Section 5:

Conjecture 1.7. Let \(f(x) \) be a monic irreducible polynomial of degree \(n \geq 3 \) in \(\mathbb{Z}[x] \). We assume that the reduced degree of \(f(x) \) is not 2. Then
\[
\mu(f) := \lim_{X \to \infty} \mu(f, X) = n/2,
\]
\[
\sigma^2(f) := \lim_{X \to \infty} \sigma^2(f, X) = n/12,
\]
and putting
\[
\Pr(c, f) := \lim_{X \to \infty} \Pr(c, f, X),
\]
the array of densities \(\{\Pr(1, f), \ldots, \Pr(n-1, f)\} \) depends only on the reduced degree \(\text{rd}(f) \) of \(f(x) \). Moreover, the following is likely:
\[
\Pr(c, f) = 0 \text{ unless } (\deg f(x))/\text{rd}(f) \leq c \leq \deg f(x) - (\deg f(x))/\text{rd}(f)
\]
and
\[
\Pr(k, f) = \Pr(n-k, f) \quad \text{for all } k,
\]
\[
\Pr(1, f) \leq \Pr(2, f) \leq \cdots \leq \Pr(n-2, f) \geq \Pr(n-1, f),
\]
that is, a symmetric unimodal sequence.

Remark 1.8. Let \(f(x) \) be a monic polynomial in \(\mathbb{Z}[x] \). We denote by \(K \) and \(K_f \) its minimal splitting field of \(f(x) \) and the Galois closure of \(K \) over \(\mathbb{Q} \), respectively. For a prime number \(p \), we know that with finitely many possible exceptions, \(f(x) \mod p \) decomposes completely if and only if \(p \) decomposes fully in \(K \), and hence in \(K_f \). Thus Chebotarev’s Density Theorem tells us that
\[
\frac{\# \{ p \in \text{Spl}(f) \mid p \leq X \}}{X/\log X} \sim \frac{1}{[K_f : \mathbb{Q}]},
\]
and hence
\[
\Pr(c, f, X) = \frac{\# \{ p \in \text{Spl}(f) \mid p \leq X, C_p(f) = c \}}{\# \{ p \in \text{Spl}(f) \mid p \leq X \}} \sim \frac{1}{[K_f : \mathbb{Q}]} \frac{\# \{ p \in \text{Spl}(f) \mid p \leq X, C_p(f) = c \}}{X/\log X}.
\]
If \(f(x) = g(x)h(x) \) for monic polynomials \(g(x), h(x) \in \mathbb{Z}[x] \), then
\[
C_p(f) = C_p(g) + C_p(h)
\]
is easy to see. Numerical data suggests that
\[
\Pr(c, g) = \lim_{X \to \infty} \frac{\# \{ p \in \text{Spl}(g) \cap \text{Spl}(h) \mid p \leq X, C_p(g) = c \}}{\# \{ p \in \text{Spl}(g) \cap \text{Spl}(h) \mid p \leq X \}}.
\]
2. Proofs

Proof of Proposition 1.1. Suppose that a prime number \(p \) is greater than \(|a| \). If \(a > 0 \), then the local solution mod \(p \) is \(p - a \), and so \(C_p(f) = 1 \). If \(a \leq 0 \), then the local solution is \(-a\), and \(C_p(f) = 0 \). □

Proof of Proposition 1.2. Let \(p \in Spl(f) \) and let \(r_i \in \mathbb{Z} \) be integral solutions of \(f(x) \equiv 0 \mod p \) with \(0 \leq r_i \leq p - 1 \). By the definition (1.2), we have

\[C_p(f) \geq a_{n-1} \]

which yields \(C_p(f) \geq 0 \) with finite exceptions. If \(C_p(f) = 0 \), then we have by (1.2),

\[0 \leq r_1 = -a_{n-1} - \sum_{i=2}^{n} r_i \leq -a_{n-1} \]

Thus, if there exist infinitely many primes \(p \in Spl(f) \) such that \(C_p(f) = 0 \), then there is an integer \(r \) by the pigeon hole principle such that \(0 \leq r \leq -a_{n-1} \) and \(r = r_1 \) for infinitely many primes, which means \(f(r) = 0 \) by \(f(r) = f(r_1) \equiv 0 \mod p \). This contradicts the assumption, and hence \(C_p(f) \geq 1 \) with finitely many possible exceptions.

Next, (1.2) implies

\[C_p(f) \leq a_{n-1} + n(p-1) \]

and so \(C_p(f) \leq n \) with finitely many possible exceptions. If \(C_p(f) = n \), then we have by (1.2),

\[np \leq a_{n-1} + r_1 + (n-1)(p-1) \]

and hence

\[1 \leq p - r_1 \leq a_{n-1} - (n-1) \leq a_{n-1} \]

Hence, if there exist infinitely many primes \(p \) such that \(C_p(f) = n \), then there is an integer \(R \) such that \(1 \leq R \leq a_{n-1} \) and \(R = p - r_1 \) for infinitely many primes \(p \). For such primes, we have \(f(-R) \equiv f(r_1) \equiv 0 \mod p \), and so \(f(-R) = 0 \), which contradicts the assumption on \(f(x) \). Thus we have \(C_p(f) \leq n - 1 \) with finitely many possible exceptions. □

Proof of Theorem 1.4. We may suppose that \(f_1, f_2 \) are monic and \(f_2(x) = (x+a)^2 \) for some rational number \(a \). Then we have

\[f(x) = ((x+a)^2)^n + c_{n-1}(x+a)^{n-1} + \cdots + c_1 \in \mathbb{Q} \]

and hence \(a_{2n-1} = 2na \). The above means that \(g(x) := f(x-a) \) is an even polynomial and then \(g(x) = g(-x) \), i.e., \(f(x-a) = f(-x-a) \). Substituting \(x = a \), we have \(f(0) = f(-2a) \), which means that \(-2a\) is a root of a monic polynomial \(f(x) - f(0) \in \mathbb{Z}[x] \). Thus \(2a \) an integer:

\[a = a_{2n-1}/2n = \mathbb{Z}/2. \]

Let \(p \in Spl(f) \) and \(f(a) \notin p\mathbb{Z} \). First we assume \(a \in \mathbb{Z} \) and let \(\pm r_i \) \((i = 1, \ldots, n)\) be solutions of \(f(x-a) \equiv 0 \mod p \); then \(-a \pm r_i \) are solutions of \(f(x) \equiv 0 \mod p \). Take an integer \(R_i \) such that

\[-a + r_i \equiv R_i \mod p \quad \text{and} \quad 0 \leq R_i \leq p - 1.

Then we have \(-a - r_i \equiv -2a - R_i \mod p \), and \(R_i, -2a - R_i \) \((i = 1, \ldots, n)\) are solutions of \(f(x) \equiv 0 \mod p \). Let us show that

\[-p + 1 \leq -2a - R_i \leq -1 \]
with finitely many possible exceptions. If \(-2a - R_i \geq 0\) for infinitely many primes \(p \in \text{Spl}(f)\), then we have \(0 \leq R_i \leq -2a\) for the same primes, and hence there is an integer \(R\) such that \(0 \leq R \leq -2a\) and \(R = R_i\) for infinitely many primes \(p \in \text{Spl}(f)\). This \(R\) satisfies \(f(R) = f(R_i) \equiv 0 \mod p\) for infinitely many primes \(p\), which yields \(f(R) = 0\). Thus we have the contradiction, and hence \(-2a - R_i \leq -1\). If \(-2a - R_i \leq -p\) for infinitely many primes \(p \in \text{Spl}(f)\), then we have \(-2a \leq R_i - p \leq -1\) for the same primes, and hence there is an integer \(R'\) such that \(-2a \leq R' \leq -1\) and \(R' = R_i - p\) for infinitely many primes \(p \in \text{Spl}(f)\). This \(R'\) satisfies \(f(R') \equiv f(R_i) \equiv 0 \mod p\) for infinitely many primes \(p\), which yields the contradiction \(f(R') = 0\). Thus we have shown (2.2) with finitely many possible exceptions, and then \(R_1, \ldots, R_n\) and \(p - 2a - R_1, \ldots, p - 2a - R_n\) are all roots in \([0, p - 1]\) of \(f(x) \mod p\). Hence we have

\[
C_p(f) = (a_{n-1} + \sum R_i + \sum (p - 2a - R_i))/p
= (a_{n-1} + np - 2an)/p
= n
\]

by (2.2).

Next, we assume \(a \in \mathbb{Z}/2 \setminus \mathbb{Z}\) and put \(a = b + 1/2\) \((b \in \mathbb{Z})\). We consider the above argument over \(\mathbb{Z}_p/p\mathbb{Z}_p\) instead of \(\mathbb{Z}/p\mathbb{Z}\); then \(a \equiv b - (p - 1)/2 \mod p\) is clear. Let \(\pm r_i\) \((i = 1, \ldots, n)\) be solutions of \(f(x - a) \equiv 0 \mod p\); then \(-b + (p - 1)/2 \pm r_i\) \((\equiv -a \pm r_i \mod p)\) are all integral solutions of \(f(x) \equiv 0 \mod p\). Take an integer \(R_i\) such that

\[-b + (p - 1)/2 + r_i \equiv R_i \mod p\]

and \(0 \leq R_i \leq p - 1\).

Then we have \(-b + (p - 1)/2 - r_i \equiv -2b - 1 - R_i \mod p\) and \(R_i, -2b - 1 - R_i\) \((i = 1, \ldots, n)\) are all solutions of \(f(x) \equiv 0 \mod p\). Let us show

\[
0 \leq p - 2b - 1 - R_i \leq p - 1
\]

with finitely many exceptions. Suppose \(p - 2b - 1 - R_i \geq p\); then we have \(0 \leq R_i \leq -2b - 1\). If this is true for infinitely many primes \(p\), then there is an integer \(R\) such that \(0 \leq R \leq -2b - 1\) and \(R = R_i\) for infinitely many primes. Therefore, \(f(R) = f(R_i) \equiv 0 \mod p\) for infinitely many primes, which implies the contradiction \(f(R) = 0\).

Suppose \(p - 2b - 1 - R_i \leq -1\); then \(-2b \leq R_i - p \leq -1\). If there exist infinitely many such primes, then there exists an integer \(R'\) such that \(-2b \leq R' \leq -1\) and \(R' = R_i - p\) for infinitely many primes. Hence \(f(R') \equiv f(R_i) \equiv 0 \mod p\) for infinitely many primes. This is the contradiction and we have shown (2.3). Now we have, with the condition (2.3),

\[
C_p(f) = (a_{n-1} + \sum R_i + \sum (p - 2b - 1 - R_i))/p
= (a_{n-1} + np - 2an)/p
= n,
\]

which completes the proof.
3. Miscellaneous remarks

Let us give some remarks. The following conjecture was stated in Remark 2 in [H].

Conjecture 3.1. Let $F = \mathbb{Q}(\alpha) (\neq \mathbb{Q})$ be an algebraic number field with an algebraic integer α, and let k be a non-negative integer. For a prime number p which decomposes fully in F and a prime ideal \mathfrak{p} lying above p, we write in $F_\mathfrak{p} = \mathbb{Q}_p$

$$\alpha = c_\mathfrak{p}(0) + c_\mathfrak{p}(1)p + \cdots (c_\mathfrak{p}(i) \in \mathbb{Z}, 0 \leq c_\mathfrak{p}(i) < p).$$

Then the points $(c_\mathfrak{p}(0)/p, c_\mathfrak{p}(1)/p, \cdots, c_\mathfrak{p}(k)/p)(\in [0,1)^k)$ distribute uniformly when p, \mathfrak{p} run over those above.

The conjectures of the average and the variance in Conjecture 1.7 are intuitively supported by Conjecture 3.1 and Theorem 2 in [1], which is quoted below for convenience as

Theorem 3.2. Let x_1, x_2, \ldots, x_n be random variables on \mathbb{R} obeying the uniform distribution $I(0,1)$, or what amounts to the same, their distribution functions are all equal to the set-theoretical characteristic function of $[0,1]$. Then, putting

$$X_n = \frac{1}{\sqrt{n}}(x_1 + x_2 + \cdots + x_n - n/2),$$

$$X = \lim_{n \to \infty} X_n$$

determines a normal distribution on \mathbb{R} with mean 0 and with variance $\frac{1}{12}$.

Indeed, we can show that Conjecture 3.1 yields the assertion on the average as follows.

Proposition 3.3. Let $f(x)$ be a monic irreducible polynomial in $\mathbb{Z}[x]$ and suppose $n = \deg f(x) \geq 2$. Assuming Conjecture 3.1 we have

$$\mu(f) = n/2.$$}

The proof is quite similar to the proof of Proposition 1 in [1].

The following gives a connection between Conjecture 4 in [1] and the viewpoint in this paper.

Proposition 3.4. Let $m \geq 2$ be a natural number and put $n = 3m$ and $f(x) = (x^3)^{m-1} + \cdots + x^3 + 1$, $g(x) = x^n - 1$. Then

$$\mu(g) = (\deg g(x) - 1)/2, \quad \sigma^2(g) = (\deg g(x) - 3)/12$$

is true if and only if

$$\mu(f) = \frac{1}{2} \deg f(x), \quad \sigma^2(f) = \frac{1}{12} \deg f(x).$$

Proof. First, we note that

$$g(x) = (x^3 - 1)f(x).$$

$\text{Spl}(g) \subset \text{Spl}(f)$ is clear. To see the converse, let $p \in \text{Spl}(f)$. Suppose that the order of any solution r of $f(x) \equiv 0 \mod p$ is relatively prime to 3; then any solution r of $f(x) \equiv 0 \mod p$ is a root of $x^m - 1 \equiv 0 \mod p$, since $r^n \equiv 1 \mod p$. This is the contradiction, because $\deg f(x) = 3m - 3 > m$. Thus there is a root r such that the order of $\langle r \rangle$ is divisible by 3 and hence $x^3 - 1 \mod p$ is completely decomposable, and hence $\text{Spl}(g) = \text{Spl}(f)$. Let r_i ($0 \leq r_i \leq p - 1$) be roots of $f(x) \mod p$ and let
{1, R_1, R_2} (0 \leq R_i \leq p - 1) be roots of \(x^3 - 1 = (x - 1)(x^2 + x + 1) \mod p\); then we have, by the definition
\[
C_p(g) = (1 + R_1 + R_2 + \sum r_i)/p = C_p(x^2 + x + 1) + C_p(f).
\]

Hence Theorem 1.4 implies \(C_p(g) = 1 + C_p(f)\) with finitely many exceptional primes \(p\), which yields
\[
\mu(g) = \mu(f) + 1, \sigma^2(g) = \sigma^2(f),
\]
which completes the proof. \(\square\)

Remark 3.5. In the above proposition, (3.1) is the assertion in Conjecture 4 in [1], if \(n\) is odd.

Remark 3.6. Although we considered carrying at the first digit only, it is possible to consider it at every digit. Let \(r_1, \ldots, r_n\) be solutions of \(f(x) \equiv 0 \mod p\); then \(a_{n-1} + \sum r_j \equiv 0 \mod p\) holds, and so we can consider \((a_{n-1} + \sum r_j)/p^i\) instead of \(C_p(f)\). Let \(\mu_i(f), \sigma_i^2(f), Pr_i(c, f)\) be those defined at the \(i\)-th digit similarly to the case \(i = 1\). We expect that they are independent of \(i\) and the product \(Pr_1(c_1, f) \cdots Pr_m(c_m, f)\) is equal to the density \(Pr([c_1, \ldots, c_m], f)\), which is the density similarly defined for the array \([c_1, \ldots, c_m]\) with the carried integer \(c_i\) at the \(i\)-th digit.

4. **Rational approximation of expected density**

In this section, we discuss approximating the expected densities by rationals.

Let \(f(x)\) be a monic polynomial of \(rd(f) = 2\) such that \(f(x)\) does not have a linear factor in \(\mathbb{Q}[x]\); then we already know by Theorem 1.4 that
\[
C_p(f) = \frac{1}{2} \deg f(x).
\]

Let \(f\) be an irreducible monic polynomial of degree \(3m\) in \(\mathbb{Z}[x]\). If the reduced degree is 3, \(Pr(c, f)\) is likely to be as follows:
\[
Pr(c, f) = \begin{cases}
2^{-m} \binom{m}{c-m} & \text{if } m \leq c \leq 2m, \\
0 & \text{otherwise}.
\end{cases}
\]

The data for \(n = 3, 6, 9, 12, 15\) in the next section support this.

Similarly, in Tables 5 and 6 in [1], when \(n = 3m\), densities seem to be approximated by
\[
\begin{cases}
2^{-(m-1)} \binom{m-1}{s-m} & \text{if } m \leq s \leq 2m - 1, \\
0 & \text{otherwise}.
\end{cases}
\]

Professor Yukari Kosugi perceived that the densities in Tables 10 and 6 of [1] are approximated by Eulerian numbers if \(n\) is a prime number. Let us introduce this. Let \(A(1, 1) = 1\) and let \(A(n, k)\) \((1 \leq k \leq n)\) be defined by
\[
A(n, k) = (n - k + 1)A(n - 1, k - 1) + kA(n - 1, k).
\]
Their values are:

<table>
<thead>
<tr>
<th>n \ k</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>11</td>
<td>11</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>26</td>
<td>66</td>
<td>26</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>57</td>
<td>302</td>
<td>302</td>
<td>57</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>12</td>
<td>1191</td>
<td>2146</td>
<td>1191</td>
<td>12</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>247</td>
<td>4293</td>
<td>15619</td>
<td>15619</td>
<td>4293</td>
<td>247</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>502</td>
<td>14608</td>
<td>88234</td>
<td>15619</td>
<td>88234</td>
<td>14608</td>
<td>502</td>
<td>1</td>
</tr>
</tbody>
</table>

In the tables referred above, the densities are well approximated by

\[A(n - 2, s)/(n - 2)! \]

when \(n \) is prime. Following her great insight, we easily see that the density \(Pr(c, f) \) is well approximated by

\[A(\deg f(x) - 1, c)/(\deg f(x) - 1)! \]

if \(rd(f) = \deg f(x) \) (cf. Section 5 below).

What is expected if \(4 \leq rd(f) < \deg f? \) (Cf. \(f_3, f_4 \) in 5.6.)

5. Numerical data

5.1. \(n = 3 \). In the following table, \(\mu, \sigma^2, Pr(c) \) are the abbreviation of \(\mu(f, 10^9) \), \(\sigma^2(f, 10^9) \), \(Pr(c, f, 10^9) \) and \(\#Spl = \#Spl(f, 10^9) \). The expected values of \(\mu(f), \sigma^2(f), Pr(c, f) \) are in the last line. We use these abbreviations hereafter if we do not refer, and the values are rounded off to four decimal places.

<table>
<thead>
<tr>
<th>(f)</th>
<th>(\mu)</th>
<th>(\sigma^2)</th>
<th>(Pr(1))</th>
<th>(Pr(2))</th>
<th>(#Spl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x^3 - x - 1)</td>
<td>1.500</td>
<td>0.2500</td>
<td>0.4998</td>
<td>0.5002</td>
<td>8474030</td>
</tr>
<tr>
<td>(x^3 + x^2 + x - 1)</td>
<td>1.500</td>
<td>0.2500</td>
<td>0.5002</td>
<td>0.4998</td>
<td>8472910</td>
</tr>
<tr>
<td>(x^3 - 3x + 1)</td>
<td>1.500</td>
<td>0.2500</td>
<td>0.4999</td>
<td>0.5001</td>
<td>16949354</td>
</tr>
<tr>
<td>(x^3 + x^2 - 4x + 1)</td>
<td>1.500</td>
<td>0.2500</td>
<td>0.4999</td>
<td>0.5001</td>
<td>16948980</td>
</tr>
</tbody>
</table>

\(n/2 = 1.5 \) \(n/12 = 0.25 \) \(1/2 \) \(1/2 \)

5.2. \(n = 4 \). The reduced degrees of the following polynomials are 4. We put

\[
\begin{align*}
 f_1 &= x^4 - x^3 - x^2 - x - 1, \\
 f_2 &= x^4 - x^3 - x^2 + x + 1, \\
 f_3 &= x^4 + x^3 + x^2 + x + 1.
\end{align*}
\]

<table>
<thead>
<tr>
<th>(f)</th>
<th>(\mu)</th>
<th>(\sigma^2)</th>
<th>(Pr(1))</th>
<th>(Pr(2))</th>
<th>(Pr(3))</th>
<th>(#Spl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_1)</td>
<td>2.000</td>
<td>0.3333</td>
<td>0.1664</td>
<td>0.6667</td>
<td>0.1669</td>
<td>2118177</td>
</tr>
<tr>
<td>(f_2)</td>
<td>2.000</td>
<td>0.3333</td>
<td>0.1667</td>
<td>0.6667</td>
<td>0.1666</td>
<td>6354490</td>
</tr>
<tr>
<td>(f_3)</td>
<td>2.000</td>
<td>0.3333</td>
<td>0.1666</td>
<td>0.6667</td>
<td>0.1667</td>
<td>12711386</td>
</tr>
</tbody>
</table>

\(n/2 = 2 \) \(n/12 = 0.3333 \) \(1/6 \) \(4/6 \) \(1/6 \)

Since \(x^5 - 1 = (x - 1)(x^4 + x^3 + x^2 + x + 1) \), we have \(C_p(x^5 - 1) = C_p(x^4 + x^3 + x^2 + x + 1) \) and so the average, the variance, and the density are the same for \(x^5 - 1 \) and \(x^4 + x^3 + x^2 + x + 1 \). Indeed, the data for \(x^4 + x^3 + x^2 + x + 1 \) here and the data for \(n = 5, x = 10^9 \) in [1] are compatible.
5.3. $n = 5$. We put

\[
\begin{align*}
 f_1 &= x^5 - x^3 - x^2 - x + 1, \\
 f_2 &= x^5 - x^4 - x^2 - x + 1, \\
 f_3 &= x^5 + x^4 - x^2 - x + 1, \\
 f_4 &= x^5 + x^4 - 4x^3 - 3x^2 + 3x + 1.
\end{align*}
\]

<table>
<thead>
<tr>
<th>f</th>
<th>μ</th>
<th>σ^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_1</td>
<td>2.501</td>
<td>0.4169</td>
</tr>
<tr>
<td>f_2</td>
<td>2.497</td>
<td>0.4177</td>
</tr>
<tr>
<td>f_3</td>
<td>2.501</td>
<td>0.4161</td>
</tr>
<tr>
<td>f_4</td>
<td>2.500</td>
<td>0.4169</td>
</tr>
</tbody>
</table>

$n/2 = 2.5$, $n/12 = 0.4167$

<table>
<thead>
<tr>
<th>$Pr(1)$</th>
<th>$Pr(2)$</th>
<th>$Pr(3)$</th>
<th>$Pr(4)$</th>
<th>$Pr(5)$</th>
<th>#Spl</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.04160</td>
<td>0.4578</td>
<td>0.4587</td>
<td>0.04187</td>
<td>423981</td>
<td></td>
</tr>
<tr>
<td>0.04228</td>
<td>0.4600</td>
<td>0.4561</td>
<td>0.04157</td>
<td>423719</td>
<td></td>
</tr>
<tr>
<td>0.04110</td>
<td>0.4590</td>
<td>0.4579</td>
<td>0.04193</td>
<td>422711</td>
<td></td>
</tr>
<tr>
<td>0.04180</td>
<td>0.4582</td>
<td>0.4584</td>
<td>0.04167</td>
<td>10169695</td>
<td></td>
</tr>
</tbody>
</table>

$1/24 = 0.04167$, $11/24 = 0.4583$, $11/24 = 0.4583$, $1/24 = 0.4583$

5.4. $n = 6$. We put

\[
\begin{align*}
 f_1 &= x^6 + x + 1, \\
 f_2 &= x^6 + x^5 + x^4 + x^3 + x^2 + x + 1, \\
 f_3 &= x^6 + 2x^5 + x^4 + x^3 + x^2 + 1 = (x^3 + x^2)^2 + (x^3 + x^2) + 1, \\
 f_4 &= x^6 + 2x^4 + x^3 + x^2 + x + 2 = (x^3 + x)^2 + (x^3 + x) + 2.
\end{align*}
\]

The reduced degree of f_1, f_2 is 6.

<table>
<thead>
<tr>
<th>f</th>
<th>μ</th>
<th>σ^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_1</td>
<td>3.005</td>
<td>0.5012</td>
</tr>
<tr>
<td>f_2</td>
<td>3.000</td>
<td>0.5000</td>
</tr>
<tr>
<td>f_3</td>
<td>6/2</td>
<td>6/12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$Pr(1)$</th>
<th>$Pr(2)$</th>
<th>$Pr(3)$</th>
<th>$Pr(4)$</th>
<th>$Pr(5)$</th>
<th>#Spl</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0086</td>
<td>0.2135</td>
<td>0.5513</td>
<td>0.2177</td>
<td>0.0089</td>
<td>70292</td>
</tr>
<tr>
<td>0.0084</td>
<td>0.2164</td>
<td>0.5501</td>
<td>0.2167</td>
<td>0.0083</td>
<td>8474221</td>
</tr>
<tr>
<td>$1/120$</td>
<td>$26/120$</td>
<td>$66/120$</td>
<td>$26/120$</td>
<td>$1/120$</td>
<td></td>
</tr>
</tbody>
</table>

Since $x^7 - 1 = (x - 1)(x^6 + x^5 + x^4 + x^3 + x^2 + x + 1) = (x - 1)f_2$, we have $C_p(x^7 - 1) = C_p(f_2)$ and so the average, the variance, and the density are the same for $x^7 - 1$ and f_2. Indeed, the data for f_2 here and the data for $n = 7, x = 10^9$ in [1] are compatible.
The reduced degree of f_3, f_4 is 3.

<table>
<thead>
<tr>
<th>f</th>
<th>μ</th>
<th>σ^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_3</td>
<td>3.001</td>
<td>0.5003</td>
</tr>
<tr>
<td>f_4</td>
<td>2.999</td>
<td>0.5004</td>
</tr>
</tbody>
</table>

\[
\begin{array}{|c|c|c|c|c|c|}
\hline
Pr(1) & Pr(2) & Pr(3) & Pr(4) & Pr(5) & #Spl \\
\hline
0 & 0.2497 & 0.4997 & 0.2506 & 0 & 705553 \\
0 & 0.2506 & 0.4996 & 0.2498 & 0 & 706369 \\
\hline
1/4 & 1/2 & 1/4 & 0 & & \\
\hline
\end{array}
\]

5.5. $n = 7$. We put

\[
\begin{align*}
 f_1 &= x^7 - x^5 - x^4 - x^3 - x^2 - x + 1, \\
 f_2 &= x^7 + x^6 - x^5 - x^4 - x^2 - x + 1, \\
 f_3 &= x^7 + x^6 - 12x^5 - 7x^4 + 28x^3 + 14x^2 - 9x + 1.
\end{align*}
\]

<table>
<thead>
<tr>
<th>f</th>
<th>μ</th>
<th>σ^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_1</td>
<td>3.495</td>
<td>0.5909</td>
</tr>
<tr>
<td>f_2</td>
<td>3.501</td>
<td>0.5792</td>
</tr>
<tr>
<td>f_3</td>
<td>3.500</td>
<td>0.5832</td>
</tr>
</tbody>
</table>

\[
\begin{array}{|c|c|c|c|c|c|c|}
\hline
Pr(1) & Pr(2) & Pr(3) & Pr(4) & Pr(5) & Pr(6) & #Spl \\
\hline
0.0016 & 0.0823 & 0.4206 & 0.4113 & 0.0832 & 0.0011 & 10076 \\
0.0017 & 0.0779 & 0.4189 & 0.4228 & 0.0775 & 0.0014 & 9994 \\
0.0014 & 0.0790 & 0.4192 & 0.4198 & 0.0792 & 0.0014 & 7264359 \\
\hline
1/6! & 57/6! & 302/6! & & & & \\
= 0.0014 & = 0.0792 & = 0.4194 & & & & \\
\hline
\end{array}
\]

5.6. $n = 8$. We put

\[
\begin{align*}
 f_1 &= x^8 + x + 2, \\
 f_2 &= x^8 + x^7 - 7x^6 - 6x^5 + 15x^4 + 10x^3 - 10x^2 - 4x + 1, \\
 f_3 &= (x^4 + x^2)^2 + 1, \\
 f_4 &= (x^4 + x^2 + x)^2 + 2.
\end{align*}
\]

The reduced degree of f_1, f_2 (resp. f_3, f_4) is 8 (resp. 4).

<table>
<thead>
<tr>
<th>f</th>
<th>μ</th>
<th>σ^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_1</td>
<td>3.989</td>
<td>0.6587</td>
</tr>
<tr>
<td>f_2</td>
<td>3.999</td>
<td>0.6671</td>
</tr>
</tbody>
</table>

\[
\begin{array}{|c|c|c|c|c|c|c|}
\hline
Pr(1) & Pr(2) & Pr(3) & Pr(4) & Pr(5) & Pr(6) & #Spl \\
\hline
0 & 0.0204 & 0.2514 & 0.4686 & 0.2376 & 0.0220 & 0 & 1225 \\
0.0002 & 0.0240 & 0.2364 & 0.4793 & 0.2361 & 0.0238 & 0.0002 & 6354766 \\
0.0002 & 0.0238 & 0.2363 & 0.4794 & 0.2363 & 0.0238 & 0.0002 & \\
\hline
\end{array}
\]

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Here the last row is $A(7,c)/7!$.

\[
\begin{array}{c|cc}
 f & \mu & \sigma^2 \\
\hline
 f_3 & 4.004 & 0.6599 \\
 f_4 & 3.994 & 0.6655 \\
 8/2 & 4 & 8/12 = 0.6667 \\
\end{array}
\]

\[
\begin{array}{cccccccc}
 Pr(1) & Pr(2) & Pr(3) & Pr(4) & Pr(5) & Pr(6) & Pr(7) & \#Spl \\
0 & 0.0267 & 0.2203 & 0.5028 & 0.2227 & 0.0276 & 0 & 44089 \\
0 & 0.0288 & 0.2221 & 0.5020 & 0.2200 & 0.0270 & 0 & 44112 \\
\end{array}
\]

For a reducible polynomial $f = x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1 = (x^2 + x + 1)(x^6 + x^3 + 1)$, the data for $n = 9$ in [1] means the following:

\[
\begin{array}{cccccccc}
 Pr(1) & Pr(2) & Pr(3) & Pr(4) & Pr(5) & Pr(6) & Pr(7) & \\
0 & 0 & 0.24993 & 0.50014 & 0.24993 & 0 & 0 & \\
\end{array}
\]

Put $g = x^2 + x + 1$, $h = x^6 + x^3 + 1$; since $Spl(h) \subseteq Spl(g)$ and $C_p(c,f) = 1 + C_p(h)$, the table above is compatible with the expectation in Section [4] noting that the reduced degree of $h(x)$ is three.

5.7. $n = 9$. We put

\[
\begin{align*}
 f_1 &= x^9 + x + 1, \\
 f_2 &= x^9 + x^8 - 8x^7 - 7x^6 + 21x^5 + 15x^4 - 20x^3 - 10x^2 + 5x + 1, \\
 f_3 &= (x^3 + x)^3 + 2, \\
 f_4 &= (x^3 + x)^3 + (x^3 + x^2)^2 + 1.
\end{align*}
\]

The reduced degree of f_1, f_2 (resp. f_3, f_4) is 9 (resp. 3).

\[
\begin{array}{c|cc}
 f & \mu & \sigma^2 \\
\hline
 f_3 & 4.506 & 0.6859 \\
 f_4 & 4.500 & 0.7500 \\
 f_3 & 4.491 & 0.7448 \\
 f_4 & 4.502 & 0.7499 \\
 9/2 & 4.5 & 9/12 = 0.75 \\
\end{array}
\]

\[
\begin{array}{cccc}
 Pr(1) & Pr(2) & Pr(3) & Pr(4) \\
0 & 0.0064 & 0.1026 & 0.3654 \\
0 & 0.1026 & 0.3654 & 0.4295 \\
0 & 0.3654 & 0.4295 & 0.0962 \\
0 & 0.4295 & 0.0962 & 0 \\
0 & 0.3654 & 0.4295 & 0.0962 \\
0 & 0.4295 & 0.3654 & 0.1026 \\
0 & 0.1026 & 0.3654 & 0.0064 \\
0 & 0.3654 & 0.4295 & 0.1026 \\
0 & 0.4295 & 0.3654 & 0.0064 \\
\hline
\#Spl & 156 & 5649358 & 38912 & 38802 \\
\end{array}
\]
The following is the table of \(A(8, c)/8!:\)

<table>
<thead>
<tr>
<th>(c)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.0000</td>
<td>0.0061</td>
<td>0.1065</td>
<td>0.3874</td>
<td>0.3874</td>
<td>0.1065</td>
<td>0.0061</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

5.8. \(n = 10\). We put

\[
\begin{align*}
f_1 &= x^{10} + x + 1, \\
f_2 &= x^{10} + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x + 1, \\
f_3 &= x^{10} + x^5 + 2, \\
f_4 &= x^{10} + 3x^5 + 3.
\end{align*}
\]

The reduced degree of \(f_1, f_2\) is 10, and the one of \(f_3, f_4\) is 5.

<table>
<thead>
<tr>
<th>(f)</th>
<th>(\mu)</th>
<th>(\sigma^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_1)</td>
<td>5.364</td>
<td>0.7769</td>
</tr>
<tr>
<td>(f_2)</td>
<td>5.000</td>
<td>0.8339</td>
</tr>
<tr>
<td>(f_3)</td>
<td>4.998</td>
<td>0.8362</td>
</tr>
<tr>
<td>(f_4)</td>
<td>5.000</td>
<td>0.8339</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
\mu & = 10/2 = 5 \quad \sigma^2 & = 10/12 = 0.8333
\end{align*}
\]

The following is the table of \(A(9, c)/9!:\)

<table>
<thead>
<tr>
<th>(c)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.0000</td>
<td>0.0014</td>
<td>0.0403</td>
<td>0.2431</td>
<td>0.4304</td>
<td>0.2431</td>
<td>0.0403</td>
<td>0.0014</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

5.9. \(n = 12\). We put

\[
\begin{align*}
f_1 &= (x^{13} - 1)/(x - 1), \\
f_2 &= (x^6 + x)^2 + (x^6 + x) + 1, \\
f_3 &= (x^4 + x)^3 - 3(x^4 + x) + 1, \\
f_4 &= (x^3 + x)^4 + (x^3 + x)^3 + (x^3 + x)^2 + (x^3 + x) + 1.
\end{align*}
\]

The reduced degree of \(f_1, f_2, f_3, f_4\) is 12, 6, 4, 3, respectively.

<table>
<thead>
<tr>
<th>(f)</th>
<th>(\mu)</th>
<th>(\sigma^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_1)</td>
<td>6.000</td>
<td>0.9993</td>
</tr>
<tr>
<td>(f_2)</td>
<td>5.796</td>
<td>1.125</td>
</tr>
<tr>
<td>(f_3)</td>
<td>6.073</td>
<td>1.004</td>
</tr>
<tr>
<td>(f_4)</td>
<td>5.996</td>
<td>0.9891</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
\mu & = 12/2 = 6 \quad \sigma^2 & = 12/12 = 1
\end{align*}
\]
On the right column, the values $2^{-4}(\binom{4}{k-4})$ for $4 \leq k \leq 8$ are given, and the following is the table of $A(11,c)/11!$ for $1 \leq c \leq 6$:

<table>
<thead>
<tr>
<th>c</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.0000</td>
<td>0.0001</td>
<td>0.0038</td>
<td>0.0552</td>
<td>0.2440</td>
<td>0.3939</td>
</tr>
</tbody>
</table>

5.10. $n = 15$. We put

$$f_1 = x^{15} + x^{14} - 14x^{13} - 13x^{12} + 78x^{11} + 66x^{10} - 220x^9 - 165x^8 + 330x^7 + 210x^6 - 252x^5 - 126x^4 + 84x^3 + 28x^2 - 8x - 1,$$

$$f_2 = x^{15} - 3x^5 + 1,$$

$$f_3 = x^{15} + x^{10} - 2x^5 - 1,$$

$$f_4 = x^{15} + x^{12} - 4x^9 - 3x^8 + 3x^3 + 1,$$

$$f_5 = x^{15} + x^{12} - 12x^9 - 21x^6 + x^3 + 5,$$

The reduced degree of f_1 is 15, and the reduced degrees of f_2, f_3 (resp. f_4, f_5) are 5 (resp. 3).

<table>
<thead>
<tr>
<th>f</th>
<th>μ</th>
<th>σ^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_1</td>
<td>7.500</td>
<td>1.250</td>
</tr>
<tr>
<td>f_2</td>
<td>7.502</td>
<td>1.245</td>
</tr>
<tr>
<td>f_3</td>
<td>7.502</td>
<td>1.250</td>
</tr>
<tr>
<td>f_4</td>
<td>7.498</td>
<td>1.246</td>
</tr>
<tr>
<td>f_5</td>
<td>7.514</td>
<td>1.239</td>
</tr>
</tbody>
</table>

| 15/2 = 7.5 | 15/12 = 1.25 |

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
The following is the table of $A(14,c)/14!$ for $1 \leq c \leq 7$:

<table>
<thead>
<tr>
<th>c</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0001</td>
<td>0.0023</td>
<td>0.0295</td>
<td>0.1473</td>
<td>0.3209</td>
</tr>
</tbody>
</table>

References