Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Congruences for the Ramanujan function and generalized class numbers


Author: Bernhard Heim
Journal: Math. Comp. 78 (2009), 431-439
MSC (2000): Primary 11F33, 11F67, 11F80; Secondary 11Y70
DOI: https://doi.org/10.1090/S0025-5718-08-02136-4
Published electronically: May 20, 2008
MathSciNet review: 2448715
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The Ramanujan $ \tau$-function satisfies well-known congruences modulo the so-called exceptional prime numbers $ 2,3,5,7,23,691$. In this paper we prove new congruences related to the irregular primes $ 131$ and $ 593$, involving generalized class numbers. As an application we obtain distribution results. We obtain a new proof of the famous $ 691$ congruence and congruences of the related Rankin L-funtion.


References [Enhancements On Off] (What's this?)

  • 1. H. Cohen: Sums involving the values at negative integers of $ L$-functions of quadratic characters. Math. Ann. 217, (1975) 271-285. MR 0382192 (52:3080)
  • 2. P. Deligne: Formes modulaires et representations l-adiques. Seminaire Bourbaki No. 355 (1969).
  • 3. M. Eichler, D. Zagier: The theory of Jacobi forms. Progress in Mathematics. Vol. 55. Boston-Basel-Stuttgart: Birkhäuser (1985). MR 781735 (86j:11043)
  • 4. P. Garrett: Decomposition of Eisenstein series: triple product $ L$-functions. Ann. Math. 125 (1987), 209-235. MR 881269 (88m:11033)
  • 5. P. Garrett: On the arithmetic of Siegel-Hilbert cuspforms: Petersson inner products and Fourier coefficients. Invent. Math. 107 (1992), 453-481. MR 1150599 (93e:11060)
  • 6. G.H. Hardy: Ramanujan. Twelve lextures on subjects suggested by his life and his work. Cambridge Univ. Press (1940). MR 0004860 (3:71d)
  • 7. B. Heim: On the Spezialschar of Maass. Preprint, submitted 2006
  • 8. H. Maass, H.: Über die Fourierschen Koeffizienten von Eisenstein Reihen zweiten Grades. Mat. fys. Med. Danske Vid. Selsk. 34 (1964). MR 0171758 (30:1985)
  • 9. K. Ono: Congruences on the Fourier coefficients of modular forms on $ \Gamma_0(N)$. Contemporary Mathematics, Vol. 166, (1994) 93-105. MR 1284053 (95g:11038)
  • 10. J.-P. Serre: Abelian l-adic representations and elliptic curves. New York (1968). MR 0263823 (41:8422)
  • 11. S. Ramanujan: On certain arithmetical functions. Trans. Cambridge Phil. Soc. 22 (1916), 159-184.
  • 12. J.-P. Serre: Congruences et formes modulaires (d'apres Swinnerton-Dyer). Seminaire Bourbaki No. 416 (1971).
  • 13. D. Zagier: Modular forms whose Fourier coefficients involve zeta-functions of quadratic fields. Modular functions of one variable, VI (Proc. Second Internat. Conf., Univ. Bonn, Bonn, 1976), pp. 105-169. Lecture Notes in Math., Vol. 627, Springer, Berlin, 1977. MR 0485703 (58:5525)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 11F33, 11F67, 11F80, 11Y70

Retrieve articles in all journals with MSC (2000): 11F33, 11F67, 11F80, 11Y70


Additional Information

Bernhard Heim
Affiliation: Max-Planck Institut für Mathematik, Vivatsgasse 7, 53111 Bonn, Germany
Email: heim@mpim-bonn.mpg.de

DOI: https://doi.org/10.1090/S0025-5718-08-02136-4
Received by editor(s): November 13, 2007
Received by editor(s) in revised form: January 9, 2008
Published electronically: May 20, 2008
Article copyright: © Copyright 2008 American Mathematical Society

American Mathematical Society