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COMPOSITE GENERALIZED LAGUERRE-LEGENDRE
SPECTRAL METHOD WITH DOMAIN DECOMPOSITION

AND ITS APPLICATION TO FOKKER-PLANCK EQUATION
IN AN INFINITE CHANNEL

BEN-YU GUO AND TIAN-JUN WANG

Abstract. In this paper, we propose a composite generalized Laguerre-

Legendre spectral method for partial differential equations on two-dimensional
unbounded domains, which are not of standard types. Some approximation
results are established, which are the mixed generalized Laguerre-Legendre
approximations coupled with domain decomposition. These results play an
important role in the related spectral methods. As an important application,
the composite spectral scheme with domain decomposition is provided for the
Fokker-Planck equation in an infinite channel. The convergence of the pro-
posed scheme is proved. An efficient algorithm is described. Numerical results
show the spectral accuracy in the space of this approach and coincide well with
theoretical analysis. The approximation results and techniques developed in
this paper are applicable to many other problems on unbounded domains.
In particular, some quasi-orthogonal approximations are very appropriate for
solving PDEs, which behave like parabolic equations in some directions, and
behave like hyperbolic equations in other directions. They are also useful for
various spectral methods with domain decompositions, and numerical simula-
tions of exterior problems.

1. Introduction

The spectral method has developed rapidly in the past three decades. Its main
merit is its high accuracy. Along with extensive applications of Legendre and
Chebyshev spectral methods for bounded domains (cf. [1, 2, 6, 9, 11, 12]), con-
siderable progress has been made recently in spectral methods for unbounded do-
mains. Among these methods, a direct and commonly used approach is based on
certain orthogonal approximations on infinite intervals, i.e., the Hermite and La-
guerre spectral methods ( see, e.g., [5, 10, 13, 16, 18, 23, 24, 28, 32]). Some authors
also developed composite Laguerre-Legendre spectral methods for the half line and
mixed Laguerre-Legendre spectral methods for an infinite strip; see [9, 15, 21, 31].

Received by the editor April 13, 2007 and, in revised form, February 9, 2008.
2000 Mathematics Subject Classification. Primary 65M70, 41A30, 82C99.
Key words and phrases. Composite generalized Laguerre-Legendre spectral method, quasi-

orthogonal approximation, domain decomposition, Fokker-Planck equation in an infinite channel.
The work of the first author was supported in part by The Grant of Science and Technology

Commission of Shanghai Municipality N.75105118, The Shanghai Leading Academic Discipline
Project N.T0401, and The Fund for E-institutes of Shanghai Universities N.E03004.

The work of the second author was supported in part by The Doctor Fund of Henan University
of Science and Technology N.09001263.

c©2008 American Mathematical Society

129



130 B. GUO AND T. WANG

In this paper, we investigate the numerical method for the Fokker-Planck equa-
tion in an infinite channel, which was first introduced by Fokker and Planck to
describe the Brownian motion of particles, and has been used in a number of differ-
ent fields, such as solid-state physics, quantum optics, chemical physics, theoretical
biology and circuit theory; e.g., see [3, 27]. The theoretical analysis of this equation
can be found in [7, 26].

Let v be the velocity of the particles, R = {v | −∞ < v < ∞}, I = {x | |x| < 1}
and Ω = I × R with the boundary Γ = {(x, v) | |x| = 1}. Moreover, Γ1 =
{(x, v) | x = −1, v ≥ 0 or x = 1, v ≤ 0} and Γ2 = Γ − Γ1. For fixedness, we focus
on Kramers’ model with the distribution function in position and velocity space,
describing the Brownian motion of particles in an external field with quadratic
potential. We also assume that the wall is absorbing. More precisely, the probability
of current at x = −1 vanishes for the particles leaving the wall into the domain,
i.e., for the particles with positive velocity. Similarly, we have the absorbing wall
at x = 1, for the particles with negative velocity. We denote by W (x, v, t) the
probability density. The positive constants k, T, m are the Boltzmann’s constant,
the absolute temperature, and the mass of particles, respectively. Let µ = kT

m and
β−1

0 > 0 be the particle relaxation time. γ > 0 is the constant in the potential of
the external field. For simplicity, we denote ∂W

∂v by ∂vW , etc. Then the considered
problem is of the form
(1.1)⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂tW (x, v, t) + v∂xW (x, v, t) − β0∂v(vW (x, v, t))
+γx∂vW (x, v, t) − β0µ∂2

vW (x, v, t) = 0, (x, v) ∈ Ω, 0 < t ≤ T,
W (x, v, t) = 0, (x, v) on Γ1, 0 < t ≤ T,
W (x, v, t) → 0, |v| → ∞, 0 < t ≤ T,
W (x, v, 0) = W0(x, v), (x, v) ∈ Ω̄.

Some numerical algorithms were proposed for solving (1.1). For instance,
Cartling [4] provided finite difference schemes, and Moore and Flaherty [25] consid-
ered the Galerkin method. In actual computations, we often imposed an artificial
boundary and certain artificial boundary condition, which induces additional nu-
merical errors. So it seems reasonable to solve the Fokker-Planck equation directly.

An interesting and challenging problem is how to use the spectral method for var-
ious important partial differential equations of non-standard types on unbounded
domains, such as (1.1). Tang, Mckee and Reeks [29] used the Hermite spectral
method for a simplified one-dimensional model which is a standard parabolic equa-
tion. Recently, Fok, Guo and Tang [8] proposed the Hermite spectral-finite dif-
ference scheme for (1.1). However, the finite difference approximation in the x-
direction seriously limits the numerical accuracy.

The difficulties of dealing with (1.1) numerically are caused by several facts.
Firstly, this problem behaves like a parabolic equation in the v-direction, and be-
haves like a hyperbolic equation in the x-direction. Thereby, we could not design
the spectral schemes and analyze the numerical errors in the usual way. Next, this
equation looks like different kinds of hyperbolic equations in the x-directions, for
v > 0 and v ≤ 0, respectively. Consequently, the solution satisfies different kinds
of boundary conditions on different subdomains. Therefore, we have to use domain
decomposition and different approximations on different unbounded subdomains.
Finally, the terms ∂2

vW (x, v, t) and ∂xW (x, v, t) in (1.1) possess the coefficients 1
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and v varying from −∞ to ∞. This matter also brings some difficulties in actual
computation and numerical analysis.

To remedy the deficiencies as discussed before, we develop in this paper the com-
posite generalized Laguerre-Legendre spectral method. We establish some results
on the composite approximations, which are the mixed approximations by using
generalized Laguerre functions and Legendre polynomials, coupled with domain
decomposition. By suitably adjusting the parameters involved in the Laguerre
functions, we design reasonable spectral schemes with exactly the same weight
functions as in the underlying problems, and fit the asymptotic behaviors of exact
solutions properly. In particular, the results on certain quasi-orthogonal approxima-
tions play an important role in spectral methods for PDEs on unbounded domains,
which behave like parabolic equations in some directions and behave like hyper-
bolic equations in other directions. They are also appropriate for various spectral
methods with domain decomposition. As an important application, we propose the
composite spectral scheme for (1.1), with the convergence analysis. An efficient
algorithm is provided. The numerical results demonstrate its spectral accuracy
in space and coincide well with theoretical analysis. The approximation results
and techniques developed in this paper are applicable to many other problems of
non-standard types on unbounded domains, as well as exterior problems.

This paper is organized as follows. In the next section, we build up some precise
results on the composite generalized Laguerre-Legendre approximations. In section
3, we design the composite spectral method for (1.1) and prove its convergence.
We also describe the implementation of the proposed method and present some
numerical results. The final section is for concluding remarks.

2. Composite generalized Laguerre-Legendre approximations

In this section, we establish the basic results on the composite generalized
Laguerre-Legendre approximations.

2.1. Generalized Laguerre approximations. We first recall the generalized La-
guerre approximation. Let Λ1 = {v | 0 < v < ∞} and χ(v) be a certain weight
function. For any integer r ≥ 0,

Hr
χ(Λ1) = {u | u is measurable on Λ1 and ||u||r,χ,Λ1 < ∞},

equipped with the following inner product, semi-norm and norm:

(u, w)r,χ,Λ1 =
∑

0≤k≤r

∫
Λ1

∂k
v u(v)∂k

v w(v)χ(v)dv,

|u|r,χ, Λ1 =
∫

Λ1

(∂r
vu(v))2χ(v)dv, ||u||r,χ,Λ1 = (u, u)

1
2
r,χ,Λ1

.

In particular, H0
χ(Λ1) = L2

χ(Λ1), with the inner product (u, w)χ, Λ1 and the norm
||u||χ, Λ1 . We omit the subscript χ in the notation when χ(v) ≡ 1.

Let ω1
α,β(v) = vαe−βv, α > −1, β > 0 be the generalized Laguerre weight func-

tion. The generalized Laguerre polynomial of degree l is defined by

L(α,β)
l (v) =

1
l!

v−αeβv∂l
v(vl+αe−βv).

The set of L(α,β)
l (v) is a complete L2

ω1
α,β

(Λ1)-orthogonal system.
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For any integer N ≥ 0, PN (Λ1) stands for the set of all polynomials of degree at
most N . The orthogonal projection PN,α,β,Λ1 : L2

ω1
α,β

(Λ1) −→ PN (Λ1) is defined
by

(2.1) (PN,α,β,Λ1u − u, φ)ω1
α,β, Λ1

= 0, ∀ φ ∈ PN (Λ1).

If ∂r
vu ∈ L2

ω1
α+r,β

(Λ1) and integers 0 ≤ s ≤ r, then (cf. [22])

(2.2) ||∂s
v(PN,α,β,Λ1u − u)||ω1

α+s,β ,Λ1
≤ c(βN)

s−r
2 ||∂r

vu||ω1
α+r,β , Λ1

.

Hereafter, c denotes a generic positive constant independent of M, N, β and any
function.

To design a proper spectral method for the Fokker-Planck equation and many
other problems, we shall use the orthogonal system of generalized Laguerre func-
tions, defined by

(2.3) L̃(α,β)
l (v) = e−

1
2βvL(α,β)

l (v), l = 0, 1, 2, . . . .

The set of L̃(α,β)
l (v) is a complete L2

vα(Λ1)-orthogonal system.
Next, let QN,β(Λ1) = {e− 1

2βvψ | ψ ∈ PN (Λ1)}. The orthogonal projection
P̃N,α,β,Λ1 : L2

vα(Λ1) → QN,β(Λ1) is defined by

(P̃N,α,β,Λ1u − u, φ)vα,Λ1 = 0, ∀ φ ∈ QN,β(Λ1).

Since P̃N,α,β,Λ1u = e−
1
2βvPN,α,β,Λ1(e

1
2βvu), we know from (2.2) that if u ∈ L2

vα(Λ1),
∂r

v(e
1
2βvu) ∈ L2

ω1
r+α,β

(Λ1) and r ≥ 0 is an integer, then

(2.4) ||P̃N,α,β,Λ1u − u||vα,Λ1 ≤ c(βN)−
r
2 ||∂r

v(e
1
2 βvu)||ω1

α+r,β ,Λ1
.

Remark 2.1. If u ∈ Hr
vα+r (Λ1), then the norm ||∂r

v(e
1
2 βvu)||ω1

r+α,β,Λ1
is finite.

For parabolic equations and differential equations which behave like parabolic
equations in the v-direction, we may approximate the initial state by using the
above projection. But for spectral methods coupled with domain decompositions,
we have to match the functions on the common boundaries of adjacent subdomains.
To do this, we introduce the spaces

F(Λ1) = L2(Λ1) ∩ {u | there exists a finite trace of u at v = 0},
0F(Λ1) = {u | u ∈ F(Λ1) and u(0) = 0},

0QN,β(Λ1) = {φ | φ ∈ QN,β(Λ1) and φ(0) = 0}.

The set F(Λ1) is meaningful. For instance, if u ∈ L2(Λ1) and u is continuous near
the point v = 0, then u ∈ F(Λ1). The orthogonal projection 0P̃N,β,Λ1 : 0F(Λ1) →
0QN,β(Λ1) is defined by

(0P̃N,β,Λ1u − u, φ)Λ1 = 0, ∀ φ ∈ 0QN,β(Λ1).

For any u ∈ F(Λ1), we set ũ(v) = u(v) − u(0)e−
1
2 βv and introduce the quasi-

orthogonal projection

∗P̃N,β,Λ1u(v) = 0P̃N,β,Λ1 ũ(v) + u(0)e−
1
2 βv.

We now estimate ||∗P̃N,β,Λ1u − u||Λ1 . Firstly, by the projection theorem,

||0P̃N,β,Λ1 ũ − ũ||Λ1 ≤ ||φ − ũ||Λ1 , ∀φ ∈ 0QN,β(Λ1).
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We take

φ(v) = e−
1
2βv

∫ v

0

PN−1,0,β,Λ1∂ξ(e
1
2 βξũ(ξ))dξ ∈ 0QN,β(Λ1).

Like the derivation of (3.3) of [15], we can use integration by parts to show that for
any w ∈ 0F(Λ1) ∩ H1(Λ1),

||∂vw||2Λ1
+

1
4
β2||w||2Λ1

= ||∂v(e
1
2βvw)||2ω1

0,β ,Λ1
.

Let w(v) = φ(v) − ũ(v). Then, along with (2.2), a direct calculation yields that

||φ − ũ||Λ1 ≤ cβ−1||PN−1,0,β,Λ1∂v(e
1
2 βvũ) − ∂v(e

1
2 βvũ)||ω1

0,β,Λ1

≤ cβ−1(βN)−
r
2 ||∂r+1

v (e
1
2 βvũ)||ω1

r,β,Λ1
,

whence
||0P̃N,β,Λ1 ũ − ũ||Λ1 ≤ cβ−1(βN)−

r
2 ||∂r+1

v (e
1
2βvũ)||ω1

r,β ,Λ1
.

It can be checked that ∗P̃N,β,Λ1u − u = 0P̃N,β,Λ1 ũ − ũ. Therefore, we derive that
for integer r ≥ 0,

||∗P̃N,β,Λ1u − u||Λ1 = ||0P̃N,β,Λ1 ũ − ũ||Λ1

≤ cβ−1(βN)−
r
2 ||∂r+1

v (e
1
2 βvũ)||ω1

r,β,Λ1
(2.5)

= cβ−1(βN)−
r
2 ||∂r+1

v (e
1
2 βvu)||ω1

r,β,Λ1
.

Remark 2.2. For dealing with the boundary condition at v = 0, we used the pro-
jection 0P̃N,β,Λ1 to define and analyze the projection ∗P̃N,β,Λ1 , instead of the usual
projection 0PN,β,Λ1 . In fact, 0PN,β,Λ1 is an orthogonal projection defined on Λ1,
with the weight function e−βv. However, the underlying problem (1.1) is not well-
posed in the Sobolev space with such a weight function. Thus, we used the projec-
tion 0P̃N,α,β,Λ1 to define ∗P̃N,β,Λ1 on Λ1, and we introduce the projection ∗P̃N,α,β,Λ2

on Λ2 similarly, in the next part. They are orthogonal projections with the same
weight function as in (1.1), and so are the most appropriate for its numerical sim-
ulation. On the other hand, we may approximate the initial value W0 ∈ L2

v2+1(Ω)
of (1.1) by a combination of such projections. But for smooth W0, we can also use
a combination of orthogonal projections in a certain weighted H1(Ω)-norm.

In the numerical analysis of spectral methods, we need some orthogonal pro-
jections in H1-norms, which correspond to the considered differential equations.
If the powers of v appearing in the coefficients of derivatives of higher orders are
not smaller than those of derivatives of lower orders, then it is easier to estimate
the errors of the related approximations. But in the Fokker-Planck equation, there
exist the terms −β0µ∂2

vW (x, v, t), −β0v∂vW (x, v, t) and so on. Thereby, we are
forced to study certain unusual approximations. To do this, we set

H1
χ1,χ0

(Λ1) = { u | u ∈ L2
χ0

(Λ1) and ∂vu ∈ L2
χ1

(Λ1)},

0H
1
χ1,χ0

(Λ1) = {u | u ∈ H1
χ1,χ0

(Λ1) and u(0) = 0}.

Let 0PN (Λ1) = {u | u ∈ PN (Λ1) and u(0) = 0} and ξ1
β(v) = (v2 + 1)e−βv. We

introduce the auxiliary orthogonal projection 0P̄
1
N,β,Λ1

: 0H
1
ω1

0,β,ξ1
β
(Λ1) → 0PN (Λ1),

defined by

(∂v(0P̄ 1
N,β,Λ1

u − u), ∂vφ)ω1
0,β,Λ1

+ (0P̄ 1
N,β,Λ1

u − u, φ)ξ1
β ,Λ1

= 0, ∀φ ∈ 0PN (Λ1).
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It is noted that in the above definition, the power of v involved in the weight
function for the function is even greater than that for its derivative!

For any u ∈ H1
1,v2+1(Λ1), we set ũ(v) = u(v) − u(0)e−

1
2 βv. Obviously, ũ ∈

0H
1
1,v2+1(Λ1). The quasi-orthogonal projection, which plays an important role in

the forthcoming analysis, is defined by

P 1
N,β,Λ1

u = e−
1
2βv(0P̄ 1

N,β,Λ1
(e

1
2βvũ) + u(0)) ∈ QN,β(Λ1).

In order to derive approximation results, we recall the following fact (cf. Lemma
2.2 of [22]).

Proposition 2.1. If w ∈ H1
ω1

α,β
(Λ1), w(0) = 0 and α < 1, then

||w||2ω1
α,β ,Λ1

≤ cα,β ||∂vw||2ω1
α,β ,Λ1

,

where cα,β =
4
β2

for α ≤ 0 and cα,β =
4 − 2α

β2(1 − α)
for 0 < α < 1. Moreover, for

w ∈ H1
ω1

α,β
(Λ1) ∩ L2

ω1
α−2,β

(Λ1) and α > 1,

||w||2ω1
α,β ,Λ1

≤ 2(3α − 2)
β2(α − 1)

||∂vw||2ω1
α,β ,Λ1

+
4α(α − 1)

β2
||w||2ω1

α−2,β ,Λ1
.

Lemma 2.1. If u ∈ H1
1,v2+1(Λ1), ∂r+1

v (e
1
2βvu) ∈ L2

ω1
r+1,β

(Λ1) and r ≥ 1 is an
integer, then

||∂v(P 1
N,β,Λ1

u − u)||Λ1 + ||P 1
N,β,Λ1

u − u||v2+1, Λ1

≤ c(β + β−2)(βN)
1−r
2 ||∂r+1

v (e
1
2βvu)||ω1

r+1,β,Λ1
.

Proof. The proof is divided into four steps.
We first consider the auxiliary orthogonal projection P 1,∗

N,β,Λ1
: H1

ω1
2,β ,ω1

0,β
(Λ1) →

PN (Λ1), defined by

(∂v(P 1,∗
N,β,Λ1

w − w), ∂vφ)ω1
2,β,Λ1

+ (P 1,∗
N,β,Λ1

w − w, φ)ω1
0,β,Λ1

= 0, ∀φ ∈ PN (Λ1).

According to Theorem 2.2 of [22],

(2.6)
||∂v(P 1,∗

N,β,Λ1
w − w)||ω1

2,β ,Λ1
+ ||P 1,∗

N,β,Λ1
w − w||ω1

0,β ,Λ1

≤ c(βN)
1−r
2 ||∂r

vw||ω1
r+1,β ,Λ1

.

Next, by the projection theorem, for any w ∈ 0H
1
ω1

0,β ,ξ1
β
(Λ1),

||∂v(0P̄ 1
N,β,Λ1

w − w)||ω1
0,β ,Λ1

+ ||0P̄ 1
N,β,Λ1

w − w||2
ξ1

β ,Λ1

≤ ||∂v(φ − w)||ω1
0,β ,Λ1

+ ||φ − w||2
ξ1

β ,Λ1
, ∀ φ ∈ 0PN (Λ1).

We now estimate the upper-bound of the right side of the above inequality. We
take

φ(v) =
∫ v

0

P 1,∗
N−1,β,Λ1

(∂ξw(ξ))dξ ∈ 0PN (Λ1).

By (2.6),

(2.7)
||∂v(φ − w)||ω1

0,β ,Λ1
= ||P 1,∗

N−1,β,Λ1
(∂vw) − ∂vw||ω1

0,β ,Λ1

≤ c(βN)
1−r
2 ||∂r+1

v w||ω1
r+1,β ,Λ1

.
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Moreover, by using (2.6), (2.7) and the second result of Proposition 2.1, we deduce
that
(2.8)
||∂v(φ − w)||ω1

2,β ,Λ1
≤ c

β (||∂2
v(φ − w)||ω1

2,β,Λ1
+ ||∂v(φ − w)||ω1

0,β,Λ1
)

= c
β (||∂v(P 1,∗

N−1,β,Λ1
(∂vw) − ∂vw)||ω1

2,β ,Λ1
+||∂v(φ−w)||ω1

0,β ,Λ1
)

≤ c
β (βN)

1−r
2 ||∂r+1

v w||ω1
r+1,β ,Λ1

.

On the other hand, by virtue of (2.7) and the first result of Proposition 2.1, we
obtain that

(2.9) ||φ − w||ω1
0,β ,Λ1

≤ 2
β
||∂v(φ − w)||ω1

0,β,Λ1
≤ c

β
(βN)

1−r
2 ||∂r+1

v w||ω1
r+1,β ,Λ1

.

Furthermore, thanks to (2.8), (2.9) and the second result of Proposition 2.1, we
verify that

||φ − w||ω1
2,β ,Λ1

≤ c

β
(||∂v(φ − w)||ω1

2,β ,Λ1
+ ||φ − w||ω1

0,β ,Λ1
)

≤ c

β2
(βN)

1−r
2 ||∂r+1

v w||ω1
r+1,β ,Λ1

.

A combination of the above estimate with (2.7) and (2.9) gives that

(2.10)
||∂v(0P̄ 1

N,β,Λ1
w − w)||ω1

0,β ,Λ1
+||0P̄ 1

N,β,Λ1
w − w||ξ1

β ,Λ1

≤ c(1 + 1
β2 )(βN)

1−r
2 ||∂r+1

v w||ω1
r+1,β,Λ1

.

Now, we are in a position of deriving the desired result. A direct calculation
shows that

P 1
N,β,Λ1

u − u = e−
1
2βv(0P̄ 1

N,β,Λ1
(e

1
2 βvũ) − e

1
2βvũ).

This fact along with (2.10) leads to

||P 1
N,β,Λ1

u − u||v2+1,Λ1 = ||0P̄ 1
N,β,Λ1

(e
1
2 βvũ) − e

1
2βvũ||ξ1

β ,Λ1

≤ c(1 + β−2)(βN)
1−r
2 ||∂r+1

v (e
1
2 βvũ)||ω1

r+1,β,Λ1

= c(1 + β−2)(βN)
1−r
2 ||∂r+1

v (e
1
2 βvu)||ω1

r+1,β,Λ1
.

Clearly,

∂v(P 1
N,β,Λ1

u − u)
= e−

1
2βv∂v(0P̄ 1

N,β,Λ1
(e

1
2βvũ) − e

1
2βvũ) − 1

2βe−
1
2βv(0P̄ 1

N,β,Λ1
(e

1
2βvũ) − e

1
2βvũ).

Accordingly, using (2.10) again gives that

||∂v(P 1
N,β,Λ1

u − u)||Λ1 ≤ ||∂v(0P̄ 1
N,β,Λ1

(e
1
2βvũ) − e

1
2 βvũ)||ω1

0,β,Λ1

+ β||0P̄ 1
N,β,Λ1

(e
1
2 βvũ) − e

1
2βvũ||ω1

0,β ,Λ1

≤ c(β + β−2)(βN)
1−r
2 ||∂r+1

v (e
1
2βvu)||ω1

r+1,β,Λ1
.

This ends the proof. �

Remark 2.3. In many problems, the powers of v appearing in the coefficients of
derivatives of higher orders are not smaller than those of derivatives of lower orders.
For instance, we consider the following Black-Sholes-like equation:

∂tW − ∂v(v2∂vW ) + W = f, 0 < v < ∞,
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with the homogeneous boundary condition at v = 0,∞. Let M = {u | u, v∂vu ∈
L2(0,∞)}. Then the weak formulation of the above problem is to find W ∈ M such
that ∫ ∞

0

∂tWudv +
∫ ∞

0

v2∂vW∂vudv +
∫ ∞

0

Wudv =
∫ ∞

0

fudv, ∀u ∈ M.

Let MN be a certain N -dimensional subspace of M. The corresponding spectral
method is to seek wN ∈ MN such that∫ ∞

0

∂twNφdv +
∫ ∞

0

v2∂vwN∂vφdv +
∫ ∞

0

wNφdv =
∫ ∞

0

fφdv, ∀φ ∈ MN .

In numerical analysis, we need the orthogonal projection P ∗
N : M → MN such that∫ ∞

0

v2∂v(P ∗
Nu − u)∂vφdv +

∫ ∞

0

(P ∗
Nu − u)φdv = 0, ∀φ ∈ MN .

For deriving the approximation error, we can use a Poincaré-type inequality, i.e.,
the Hardy-type inequality:∫ ∞

0

u2dv ≤ c

∫ ∞

0

v2(∂vu)2dv.

But it does not work in some PDEs, such as the Fokker-Planck equation. Thereby,
we are forced to consider the unusual approximations as in the last paragraph.

We now consider some approximations on the interval Λ2 = (−∞, 0). The space
Hr

χ(Λ2) is defined as usual, with the inner product (u, w)r,χ,Λ2 , the semi-norm
|u|r,χ,Λ2 and the norm ||u||r,χ,Λ2 , especially, H0

χ(Λ2) = L2
χ(Λ2), with the inner

product (u, w)χ,Λ2 and the norm ||u||χ,Λ2 .
Let QN,β(Λ2) = {e 1

2βvψ | ψ ∈ PN (Λ2)}. The orthogonal projection P̃N,α,β,Λ2 :
L2

(−v)α(Λ2) → QN,β(Λ2) is defined by

(P̃N,α,β,Λ2u − u, φ)(−v)α,Λ2 = 0, ∀ φ ∈ QN,β(Λ2).

Let ω2
α,β(v) = ω1

α,β(−v) = (−v)αeβv. We can prove as in the derivation of (2.4)
that for any integer r ≥ 0,

(2.11) ||P̃N,α,β,Λ2u − u||(−v)α,Λ2 ≤ c(βN)−
r
2 ||∂r

v(e−
1
2 βvu)||ω2

α+r,β ,Λ2
.

We set

F(Λ2) = L2(Λ2) ∩ {u | there exists a finite trace of u at v = 0},
0F(Λ2) = {u | u ∈ F(Λ2) and u(0) = 0},

0QN,β(Λ2) = {φ | φ ∈ QN,β(Λ2) and φ(0) = 0}.

The orthogonal projection 0P̃N,β,Λ2 : 0F(Λ2) → 0QN,β(Λ2) is defined by

(0P̃N,β,Λ2u − u, φ)Λ2 = 0, ∀ φ ∈ 0QN,β(Λ2).

For any u ∈ F(Λ2), we set ũ(v) = u(v) − u(0)e
1
2βv, and introduce the following

quasi-orthogonal projection:

∗P̃N,β,Λ2u(v) = 0P̃N,β,Λ2 ũ(v) + u(0)e
1
2 βv.

Like (2.5), if u ∈ F(Λ2), ∂r
v(e−

1
2βvu) ∈ L2

ω2
r,β

(Λ2) and r ≥ 0 is an integer, then

(2.12) ||∗P̃N,β,Λ2u − u||Λ2 ≤ cβ−1(βN)−
r
2 ||∂r

v(e−
1
2βvu)||ω2

r,β ,Λ2
.
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Furthermore, let

H1
χ1,χ0

(Λ2) = { u | u ∈ L2
χ0

(Λ2) and ∂vu ∈ L2
χ1

(Λ2)},
0H1

χ1,χ0
(Λ2) = { u | u ∈ H1

χ1,χ0
(Λ2) and u(0) = 0}.

Moreover, 0PN (Λ2) = {φ | φ ∈ PN (Λ2) and u(0) = 0} and ξ2
β(v) = (v2 +1)eβv. We

introduce the auxiliary orthogonal projection 0P̄ 1
N,β,Λ2

: 0H1
ω2

0,β,ξ2
β
(Λ2) → 0PN (Λ2),

defined by

(∂v(0P̄ 1
N,β,Λ2

u − u), ∂vφ)ω2
0,β,Λ2

+ (0P̄ 1
N,β,Λ2

u − u, φ)ξ2
β ,Λ2

= 0, ∀φ ∈ 0PN (Λ2).

For any u ∈ H1
1,v2+1(Λ2), we set ũ(v) = u(v) − u(0)e

1
2βv. Obviously, we have ũ ∈

0H1
1,v2+1(Λ2). The quasi-orthogonal projection, which also plays an important role

in the analysis, is defined by

P 1
N,β,Λ2

u = e
1
2 βv 0P̄ 1

N,β,Λ2
(e−

1
2 βvu) ∈ QN,β(Λ2).

Following the same line as in the proof of Lemma 2.1, we verify that if u ∈
H1

1,v2+1(Λ2), ∂r+1
v (e−

1
2 βvu) ∈ L2

ω2
r+1,β

(Λ2) and r ≥ 1 is an integer, then

(2.13)
||∂v(P 1

N,β,Λ2
u − u)||Λ2 +||P 1

N,β,Λ2
u − u||v2+1, Λ2

≤ c(β + β−2)(βN)
1−r
2 ||∂r+1

v (e−
1
2βvu)||ω2

r+1,β ,Λ2
.

2.2. Legendre approximations. We now turn to the Legendre approximation.
For an integer r ≥ 0, we define the space Hr(I) and its norm ||u||r,I as usual. We
denote the inner product and norm of L2(I) by (u, w)I and ||u||I , respectively.

The Legendre polynomial of degree m is defined by

Lm(x) =
(−1)m

2mm!
∂m

x (1 − x2)m.

The set of Legendre polynomials is a complete L2(I)-orthogonal system.
Now, let M be any positive integer. PM (I) stands for the set of all polynomials

of degree at most M . The orthogonal projection PM,I : L2(I) → PM (I) is defined
by

(PM,Iu − u, φ)I = 0, ∀φ ∈ PM (I).

If (1 − x2)
r
2 ∂r

xu ∈ L2(I) and r ≥ 0 is an integer, then (cf. page 389 of [14])

(2.14) ||PM,Iu − u||I ≤ cM−r||(1 − x2)
r
2 ∂r

xu||I .
With the aid of (2.14) and an argument as in [6, 12], we can improve the existing
estimate for ||∂x(PM,Iu − u)||I . In other words, if ∂xu ∈ L2(I), (1 − x2)

r−1
2 ∂r

xu ∈
L2(I) and r ≥ 1 is an integer, then

(2.15) ||∂x(PM,Iu − u)||I ≤ cM
3
2−r||(1 − x2)

r−1
2 ∂r

xu||I .
Next, let P0

M (I) = { φ | φ ∈ PM (I) and φ(−1) = φ(1) = 0}. The orthogonal
projection P 1,0

M,I : H1
0 (I) → P0

M (I) is defined by

(∂x(P 1,0
M,Iu − u), ∂xφ)I = 0, ∀φ ∈ P0

M (I).

According to Theorem 3.4 of [19], we know that if ∂s
xu ∈ L2(I), (1 − x2)

r−1
2 ∂r

xu ∈
L2(I), u(−1) = u(1) = 0, and r ≥ 1 is an integer, then

(2.16) ||∂s
x(P 1,0

M,Iu − u)||I ≤ cMs−r||(1 − x2)
r−1
2 ∂r

xu||I , s = 0, 1.
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For the spectral method of hyperbolic equations, we have to consider a specific
projection. To do this, let

0F(I) = L2(I) ∩ {u | there exists a finite trace of u at x = −1, and u(−1) = 0},
0PM (I) = { φ |φ ∈ PM (I) and φ(−1) = 0}.

The orthogonal projection 0PM,I : 0F(I) → 0PM (I) is defined by

(0PM,Iu − u, φ)I = 0, ∀φ ∈ 0PM (I).

Lemma 2.2. If u ∈ 0F(I), (1 − x2)
r−1
2 ∂r

xu ∈ L2(I) and r ≥ 1 is an integer, then

||0PM,Iu − u||I ≤ cM−r||(1 − x2)
r−1
2 ∂r

xu||I .

Proof. By the projection theorem,

(2.17) ||0PM,Iu − u||I ≤ ||φ − u||I , ∀φ ∈ 0PM (I).

We follow the same line as in [15] to take

φ(x) =
∫ x

−1

PM−1,I∂ξu(ξ)dξ ∈ 0PM (I).

Due to the definition of PM,I , we have that

(2.18) φ(1) =
∫

I

PM−1,I∂ξu(ξ)dξ =
∫

I

∂ξu(ξ)dξ = u(1).

Furthermore, let

g(x) = φ(x) − u(x), G(x) =
∫ x

−1

g(ξ)dξ.

By integrating by parts, and using (2.14) and (2.18), we deduce that

||φ − u||2I = (φ − u, g)I = (φ − u, ∂xG)I

= −(∂x(φ − u), G)I = −(PM−1,I∂xu − ∂xu, G − PM−1,IG)I

≤ cM−r||(1 − x2)
r−1
2 ∂r

xu||I ||∂xG||I
≤ cM−r||(1 − x2)

r−1
2 ∂r

xu||I ||φ − u||I .
Then the desired result follows from the above and (2.17) immediately. �

In order to obtain a better error estimate, we need other special projections.
Let 0H

1(I) = H1(I) ∩ 0F(I). For any u ∈ 0H
1(I), we set ũ(x) = u(x) −

1
2 (x + 1)u(1). Clearly, ũ ∈ H1

0 (I). Then, we define the quasi-orthogonal projec-
tion 0P

1
M,I : 0H

1(I) → 0PM (I) as

0P
1
M,Iu(x) = P 1,0

M,I ũ(x) +
1
2
(x + 1)u(1).

Since 0P
1
M,Iu(x) − u(x) = P 1,0

M,I ũ(x) − ũ(x), we use (2.16) to derive that if u ∈
0F(I), ∂s

xu ∈ L2(I), (1 − x2)
r−1
2 ∂r

xu ∈ L2(I) and r ≥ 2 is an integer, then

(2.19)
||∂s

x(0P 1
M,Iu − u)||I = ||∂s

x(P 1,0
M,I ũ − ũ)||I ≤ cMs−r||(1 − x2)

r−1
2 ∂r

xũ||I
= cMs−r||(1 − x2)

r−1
2 ∂r

xu||I , s = 0, 1.

If r = 1, then by using the trace theorem and the Poincaré inequality, we derive
that ||∂xũ||I ≤ ||∂xu||I + |u(1)| ≤ c||∂xu||I . Thereby, the estimate (2.19) is also
valid for r ≥ 1.
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Remark 2.4. We may consider the generalized Jacobi orthogonal approximation
P̄M,I as in [17], by taking the polynomials (x+1)J (0,1)

m−1(x), 1 ≤ m ≤ M, as the base
functions. These polynomials are mutually orthogonal associated with the weight
function (1 + x)−1. In this case, for any integers 0 ≤ µ ≤ r,∫

I

(1 − x)µ(1 + x)µ−1(∂µ
x (P̄M,Iu(x) − u(x)))2dx

≤ cMµ−r

∫
I

(1 − x)r(1 + x)r−1(∂r
xu(x))2dx.

But in this paper, we need to estimate the H1(I)-norm of the difference between
u(x) and its orthogonal projection. Therefore, we cannot use the above result with
µ = 1, by which we could not measure the approximation error precisely as x → 1.
This is the reason why we derived the upper-bound of ||∂x(0P 1

M,Iu − u)||I .
In this work, we shall use other kinds of approximations. Let
0F(I) = L2(I) ∩ {u | there exists a finite trace of u at x = 1, and u(1) = 0},

0PM (I) = {φ |φ ∈ PM (I) and φ(1) = 0}.

The orthogonal projection 0PM,I : 0F(I) → 0PM (I) is defined by

(0PM,Iu − u, φ)I = 0, ∀φ ∈ 0PM (I).

If u ∈ 0F(I), (1 − x2)
r−1
2 ∂r

xu ∈ L2(I) and r ≥ 1 is an integer, then

(2.20) ||0PM,Iu − u||I ≤ cM−r||(1 − x2)
r−1
2 ∂r

xu||I .

On the other hand, let 0H1(I) = H1(I)∩0F(I). For any u ∈ 0H1(I), we set ũ(x) =
u(x) − 1

2 (1 − x)u(−1) ∈ H1
0 (I). Then, we define the quasi-orthogonal projection

0P 1
M,I : 0H1(I) → 0PM (I) as

0P 1
M,Iu(x) = P 1,0

M,I ũ(x) +
1
2
(1 − x)u(−1).

By an argument similar to the derivation of (2.19), we observe that if u ∈ 0F(I), ∂s
xu

∈ L2(I), (1 − x2)
r−1
2 ∂r

xu ∈ L2(I) and r ≥ 1 is an integer, then

(2.21) ||∂s
x(0P 1

M,Iu − u)||I ≤ cMs−r||(1 − x2)
r−1
2 ∂r

xu||I , s = 0, 1.

2.3. Mixed generalized Laguerre-Legendre approximations. We now inves-
tigate the mixed generalized Laguerre-Legendre approximations. Let Ω1 = I × Λ1

and χ(x, v) be a certain weight function. We define the space L2
χ(Ω1) as usual, with

the following inner product and norm:

(u, w)χ,Ω1 =
∫ ∫

Ω1

u(x, v)w(x, v)χ(x, v)dxdv, ||u||χ,Ω1 = (u, u)
1
2
χ,Ω1

.

We omit the subscript χ in the notation when χ(x, v) ≡ 1.
Now, let 0Fvα(Ω1) = L2

vα(Λ1; 0F(I)) and 0VM,N,β(Ω1) = 0PM (I) ⊗ QN,β(Λ1).
The orthogonal projection PM,N,α,β,Ω1u = (P̃N,α,β,Λ1 ·0PM,I)u. In order to estimate
||PM,N,α,β,Ω1u − u||vα,Ω1 , we use the following notation with integers q, r ≥ 0:

A
q,r
ω1

α,β,Ω1
(u) =

∫
I

||∂r
v(e

1
2 βvu)||2ω1

r+α,β,Λ1
dx +

∫
Λ1

vα||(1 − x2)
q−1
2 ∂q

xu||2Idv.
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Theorem 2.1. For any u ∈ 0Fvα(Ω1) and integers q, r ≥ 0,

(2.22) ||PM,N,α,β,Ω1u − u||2vα,Ω1
≤ c(M−2q + (βN)−r)Aq,r

ω1
α,β,Ω1

(u),

provided that A
q,r
ω1

α,β ,Ω1
(u) is finite.

Proof. By virtue of (2.4) and Lemma 2.2,

||PM,N,α,β,Ω1u − u||2vα,Ω1

≤ 2||0PM,I(P̃N,α,β,Λ1u) − P̃N,α,β,Λ1u||2vα,Ω1
+ 2||P̃N,α,β,Λ1u − u||2vα,Ω1

≤ cM−2q

∫
Λ1

vα||(1 − x2)
q−1
2 ∂q

xP̃N,α,β,Λ1u||2Idv

+ c(βN)−r

∫
I

||∂r
v(e

1
2 βvu)||2ω1

r+α,β,Λ1
dx.

Moreover, thanks to (2.4) with r = 0, we have∫
Λ1

vα||(1 − x2)
q−1
2 ∂q

xP̃N,α,β,Λ1u||2Idv ≤ c

∫
Λ1

vα||(1 − x2)
q−1
2 ∂q

xu||2Idv.

Then the desired result follows immediately. �

For spectral methods with domain decomposition, we should consider the or-
thogonal projection ∗PM,N,β,Ω1u = (∗P̃N,β,Λ1 · 0PM,I)u. Following the same line as
in the proof of Theorem 2.1, we use (2.5) and Lemma 2.2 to obtain that

(2.23) ||∗PM,N,β,Ω1u − u||2Ω1
≤ c(M−2q + (βN)−r)∗A

q,r
ω1

0,β,Ω1
(u),

where

∗A
q,r
ω1

0,β,Ω1
(u) =

∫
I
||∂r+1

v (e
1
2 βvu)||2

ω1
r,β ,Λ1

dx

+
∫
Λ1

(||(1 − x2)
q−1
2 ∂q

xu||2I + β−2e−βv||(1 − x2)
q−1
2 ∂q

x∂v(e
1
2βvu)||2I)dv.

In the numerical analysis of the composite spectral method for the Fokker-
Planck equation, we need a specific projection. For this purpose, let
0F1

1,v2+1(Ω1) = H1
1,v2+1(Λ1; 0F(I)) equipped with the norm ||u||1,1,v2+1, Ω1 =

(||∂vu||2Ω1
+ ||u||2v2+1, Ω1

)
1
2 .

The quasi-orthogonal projection P 1
M,N,β,Ω1

u = (P 1
N,β,Λ1

·0P 1
M,I)u. For describing

approximation results, we use the following notation with integers q, r ≥ 1:

B
q,r
β,Ω1

(u)

= (β + β−2)2
∫

I

(||∂r+1
v (e

1
2 βvu)||2ω1

r+1,β,Λ1
+ (1 − x2)q−1||∂2

v(e
1
2 βv∂q

xu)||2ω1
2,β ,Λ1

)dx

+
∫

Λ1

(||(1 − x2)
q−1
2 ∂q

x∂vu||2I + (v2 + 1)||(1 − x2)
q−1
2 ∂q

xu||2I)dv.

Theorem 2.2. For any u ∈ 0F1
1,v2+1(Ω1) and integers q, r ≥ 1,

(2.24)
||∂v(P 1

M,N,β,Ω1
u − u)||2Ω1

+ ||P 1
M,N,β,Ω1

u − u||2v2+1,Ω1

≤ c(M−2q + (βN)1−r)Bq,r
β,Ω1

(u),

provided that B
q,r
β,Ω1

(u) is finite.
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Proof. Since P 1
M,N,β,Ω1

u = P 1
N,β,Λ1

(0P 1
M,Iu), we have that

||∂v(P 1
M,N,β,Ω1

u − u)||2Ω1
+ ||P 1

M,N,β,Ω1
u − u||2v2+1,Ω1

≤ F1(u) + F2(u) + F3(u),

where
F1(u) = 2||∂v(P 1

N,β,Λ1
u − u)||2Ω1

+ 2||P 1
N,β,Λ1

u − u||2v2+1,Ω1
,

F2(u) = 2||∂v(0P 1
M,I(P

1
N,β,Λ1

u) − P 1
N,β,Λ1

u)||2Ω1
,

F3(u) = 2||0P 1
M,I(P

1
N,β,Λ1

u) − P 1
N,β,Λ1

u||2v2+1,Ω1
.

Due to Lemma 2.1,

F1(u) ≤ c(β + β−2)2(βN)1−r

∫
I

||∂r+1
v (e

1
2 βvu)||2ω1

r+1,β,Λ1
dx.

Next, by using Lemma 2.1 with r = 1 and (2.19) with s = 0, we obtain that

F2(u) ≤ cM−2q

∫
Λ1

||(1 − x2)
q−1
2 ∂q

x∂vP 1
N,β,Λ1

u||2Idv

≤ cM−2q

∫
Λ1

||(1 − x2)
q−1
2 ∂q

x∂vu||2Idv

+ c(β + β−2)2M−2q

∫
I

(1 − x2)q−1||∂2
v(e

1
2βv∂q

xu)||2ω1
2,β,Λ1

dx.

Similarly,

F3(u) ≤ cM−2q

∫
Λ1

(v2 + 1)||(1 − x2)
q−1
2 ∂q

xP 1
N,β,Λ1

u||2Idv

≤ cM−2q

∫
Λ1

(v2 + 1)||(1 − x2)
q−1
2 ∂q

xu||2Idv

+ c(β + β−2)2M−2q

∫
I

(1 − x2)q−1||∂2
v(e

1
2βv∂q

xu)||2ω1
2,β,Λ1

dx.

A combination of previous estimates leads to the desired result. �

We now turn to the approximations on the domain Ω2 = I × Λ2. We define the
space L2

χ(Ω2) as usual, with the inner product (u, w)χ,Ω2 and the norm ||u||χ,Ω2 .
Also, we set 0F(−v)α(Ω2) = L2

(−v)α(Λ2; 0F(I)) and 0VM,N,β(Ω2) = 0PM (I) ⊗
QN,β(Λ2).

The orthogonal projection PM,N,α,β,Ω2u = (P̃N,α,β,Λ2 · 0PM,I)u. Let

A
q,r
ω2

α,β,Ω2
(u) =

∫
I

||∂r
v(e−

1
2βvu)||2ω2

r+α,β ,Λ2
dx +

∫
Λ2

(−v)α||(1 − x2)
q−1
2 ∂q

xu||2Idv.

Following the same line as in the proof of Theorem 2.1, we show that for integers
q, r ≥ 0,

(2.25) ||PM,N,α,β,Ω2u − u||2(−v)α,Ω2
≤ c(M−2q + (βN)−r)Aq,r

ω2
α,β,Ω2

(u),

provided that A
q,r
ω2

α,β ,Ω2
(u) is finite.

We also introduce the quasi-orthogonal projection ∗PM,N,β,Ω2u = (∗P̃N,β,Λ2 ·
0PM,I)u. Following the same line as in the proof of Theorem 2.1, we use (2.12) and
(2.20) to obtain that

(2.26) ||∗PM,N,β,Ω2u − u||2Ω2
≤ c(M−2q + (βN)−r)∗A

q,r
ω2

0,β,Ω2
(u),
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where

∗A
q,r
ω2

0,β,Ω2
(u) =

∫
I
||∂r+1

v (e−
1
2βvu)||2

ω2
r,β ,Λ2

dx

+
∫
Λ2

(||(1 − x2)
q−1
2 ∂q

xu||2I + β−2eβv||(1 − x2)
q−1
2 ∂q

x∂v(e−
1
2 βvu)||2I)dv.

Next, let 0F1
1,v2+1(Ω2) = H1

1,v2+1(Λ2,
0F(I)), equipped with the norm

||u||1,1,v2+1, Ω2 = (||∂vu||2Ω2
+ ||u||2v2+1, Ω2

)
1
2 .

The quasi-orthogonal projection P 1
M,N,β,Ω2

u = (P 1
N,β,Λ2

· 0P 1
M,I)u. Let

B
q,r
β,Ω2

(u)

= (β+β−2)2
∫

I

(||∂r+1
v (e−

1
2βvu)||2ω2

r+1,β, Λ2
+ (1 − x2)q−1||∂2

v(e−
1
2 βv∂q

xu)||2ω2
2,β,Λ2

)dx

+
∫

Λ2

(||(1 − x2)
q−1
2 ∂q

x∂vu||2I + (v2 + 1)||(1 − x2)
q−1
2 ∂q

xu||2I)dv.

Like Theorem 2.2, we have that for u ∈ 0F1
1,v2+1(Ω2) and integers q, r ≥ 1,

(2.27)
||∂v(P 1

M,N,β,Ω2
u − u)||2Ω2

+ ||P 1
M,N,β,Ω2

u − u||2v2+1,Ω2

≤ c(M−2q + (βN)1−r)Bq,r
β,Ω2

(u),

provided that B
q,r
β,Ω2

(u) is finite.

2.4. Composite approximations. We now consider several composite general-
ized Laguerre-Legendre approximations, which will be used in the next section.
The space L2

χ(Ω) is defined as usual, with the inner product (u, w)χ,Ω and the
norm ||u||χ,Ω. We omit the subscript χ in the notation when χ(x, v) ≡ 1. Let

M(Ω) = {u | u ∈ L2
v2+1(Ω), ∂xu, ∂vu ∈ L2(Ω), u|Γ1 = 0 and u|Γ2 ∈ L2

|v|(Γ2)},
VM,N,β(Ω) = M(Ω) ∩ {φ | φ|Ω1 ∈ QN,β,Λ1 ⊗ 0PM (I); φ|Ω2 ∈ QN,β,Λ2 ⊗ 0PM (I)}.

The composite approximations are defined as

PM,N,β,Ωu(x, v)|Ωj
= PM,N,0,β,Ωj

u(x, v), ∗PM,N,β,Ωu(x, v)|Ωj
= ∗PM,N,β,Ωj

u(x, v),

P 1
M,N,β,Ωu(x, v)|Ωj

= P 1
M,N,,β,Ωj

u(x, v), j = 1, 2.

It is noted that ∗PM,N,β,Ωu, P 1
M,N,β,Ωu ∈ VM,N,β(Ω). But PM,N,β,Ωu has a jump

at v = 0.
For a description of approximation errors, we introduce the following notation:

A
q,r
β,Ω(u) =

2∑
j=1

A
q,r

ωj
0,β,Ωj

(u), ∗A
q,r
β,Ω(u) =

2∑
j=1

∗A
q,r

ωj
0,β,Ωj

(u), B
q,r
β,Ω(u) =

2∑
j=1

B
q,r
β,Ωj

(u).

We can use (2.22)-(2.27) to derive that

||PM,N,β,Ωu − u||2Ω ≤ c(M−2q + (βN)−r)Aq,r
β,Ω(u),(2.28)

||∗PM,N,β,Ωu − u||2Ω ≤ c(M−2q + (βN)−r)∗A
q,r
β,Ω(u),(2.29)

||∂v(P 1
M,N,β,Ωu − u)||2Ω + ||P 1

M,N,β,Ωu − u||2v2+1,Ω(2.30)

≤ c(M−2q + (βN)1−r)Bq,r
β,Ω(u).

Another useful composite projection ∗∗PM,N,β,Ω : L2(Ω) → VM,N,β(Ω) is defined
by

(∗∗PM,N,β,Ωu − u, φ)Ω = 0, ∀φ ∈ VM,N,β(Ω).
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By the projection theorem,

(2.31) ||∗∗PM,N,β,Ωu− u||Ω ≤ ||∗PM,N,β,Ωu− u||Ω ≤ c(M−2q + (βN)−r)∗A
q,r
β,Ω(u).

3. Composite spectral scheme for Fokker-Planck equation

In this section, we propose the composite spectral scheme for the Fokker-Planck
equation in an infinite channel, with the convergence analysis. We also describe the
implementation and present some numerical results.

3.1. Composite spectral scheme. Let

M̃(Ω) = {u | u ∈ L2
v2+1(Ω), ∂vu ∈ L2(Ω), u|Γ1 = 0 and u|Γ2 ∈ L2

|v|(Γ2)}.

A weak formulation of (1.1) is to seek a solution W ∈ L∞(0, T ; L2(Ω)) ∩
L2(0, T ; M̃(Ω)) such that
(3.1)⎧⎪⎪⎨
⎪⎪⎩

(∂tW (t), u)Ω − (vW (t), ∂xu)Ω + β0(vW (t), ∂vu)Ω + γ(x∂vW (t), u)Ω

+β0µ(∂vW (t), ∂vu)Ω +
∫

Γ2

|v|W (·, v, t)u(·, v)dv = 0, ∀ u ∈ M, 0 < t ≤ T,

W (0) = W0.

Following the same line as in the derivation of the main result of [26], it can be
proved that if W0 ∈ L2

v2+1(Ω), then (3.1) has a unique solution W ∈L∞(0, T ; L2(Ω))
∩L2(0, T ; M̃(Ω)). If, in addition, ∂xW0 ∈ L2(Ω), then ∂xW ∈ L∞(0, T ; L2(Ω)). We
focus on the smooth solution of (3.1), i.e., ∂xW ∈ L2(0, T ; L2(Ω)). In this case, an
alternative form of (3.1) is to find W ∈ L∞(0, T ; L2(Ω))∩L2(0, T ; M(Ω)) such that

(3.2)

⎧⎨
⎩

(∂tW (t), u)Ω + (v∂xW (t), u)Ω + β0(vW (t), ∂vu)Ω + γ(x∂vW (t), u)Ω
+β0µ(∂vW (t), ∂vu)Ω = 0, ∀ u ∈ M, 0 < t ≤ T,

W (0) = W0.

We now design the composite generalized Laguerre-Legendre spectral scheme for
(3.2). It is to find wM,N (t) ∈ VM,N,β(Ω) for all 0 ≤ t ≤ T such that

(3.3)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(∂twM,N (t), φ)Ω + (v∂xwM,N (t), φ)Ω + β0(vwM,N (t), ∂vφ)Ω
+γ(x∂vwM,N (t), φ)Ω + β0µ(∂vwM,N (t), ∂vφ)Ω = 0,

∀ φ ∈ VM,N,β(Ω), 0 < t ≤ T,

wM,N (0) = ∗PM,N,β,ΩW0, or ∗∗PM,N,β,ΩW0.

3.2. Error analysis. We next deal with the convergence of scheme (3.3). Let
WM,N = P 1

M,N,β,ΩW . We have from (3.2) that

(3.4)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(∂tWM,N (t), φ)Ω + (v∂xWM,N (t), φ)Ω + β0(vWM,N (t), ∂vφ)Ω

+γ(x∂vWM,N (t), φ)Ω + β0µ(∂vWM,N (t), ∂vφ)Ω +
5∑

j=1

Gj(t, φ) = 0,

∀ φ ∈ VM,N,β(Ω), 0 < t ≤ T,

WM,N (0) = P 1
M,N,β,ΩW0,
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where

G1(t, φ) = (∂tW (t) − ∂tWM,N (t), φ)Ω,

G2(t, φ) = (v∂xW (t) − v∂xWM,N (t), φ)Ω,

G3(t, φ) = β0(vW (t) − vWM,N (t), ∂vφ)Ω,

G4(t, φ) = γ(x∂vW (t) − x∂vWM,N (t), φ)Ω,

G5(t, φ) = β0µ(∂vW (t) − ∂vWM,N (t), ∂vφ)Ω.

Setting W̃M,N = wM,N − WM,N and subtracting (3.4) from (3.3), we obtain that
(3.5)⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(∂tW̃M,N (t), φ)Ω + (v∂xW̃M,N (t), φ)Ω + β0(vW̃M,N (t), ∂vφ)Ω

+γ(x∂vW̃M,N (t), φ)Ω + β0µ(∂vW̃M,N (t), ∂vφ)Ω =
5∑

j=1

Gj(t, φ),

∀ φ ∈ VM,N,β(Ω), 0 < t ≤ T,

W̃M,N (0) = ∗PM,N,β,ΩW0 − P 1
M,N,β,ΩW0, or ∗∗PM,N,β,ΩW0 − P 1

M,N,β,ΩW0.

By integration by parts, we observe that

2(v∂xW̃M,N (t), W̃M,N (t))Ω =
∫

Γ2

|v|W̃ 2
M,N (t)dv,(3.6)

2β0(vW̃M,N (t), ∂vW̃M,N (t))Ω = −β0||W̃M,N (t)||2Ω.(3.7)

Clearly,

(3.8) 2γ|(x∂vW̃M,N (t), W̃M,N (t))Ω| ≤
1
2
β0µ||∂vW̃M,N (t)||2Ω +

2γ2

β0µ
||W̃M,N (t)||2Ω.

Hence, by taking φ = 2W̃M,N in (3.5) and using (3.6)-(3.8), we obtain that

∂t||W̃M,N (t)||2Ω +
3
2
β0µ||∂vW̃M,N (t)||2Ω +

∫
Γ2

|v|W̃ 2
M,N (t)dv

≤ 2
5∑

j=1

Gj(t, W̃M,N (t)) + (β0 +
2γ2

β0µ
)||W̃M,N (t)||2Ω.(3.9)

Therefore, it remains to estimate the terms |Gj(t, W̃M,N (s))|, 1 ≤ j ≤ 5.
We use the Cauchy inequality and (2.30) to verify that for integers q, r ≥ 1,

2|G1(t, W̃M,N (t))| ≤ ||∂t(W (t) − WM,N (t))||2Ω + ||W̃M,N (t)||2Ω
≤ c(M−2q + (βN)1−r)Bq,r

β,Ω(∂tW (t)) + ||W̃M,N (t)||2Ω ,(3.10)

2|G2(t, W̃M,N (t))| ≤ ||v∂x(W (t) − WM,N (t))||2Ω + ||W̃M,N (t)||2Ω
≤ c(M−2q + (βN)1−r)Bq,r

β,Ω(∂xW (t)) + ||W̃M,N (t)||2Ω.(3.11)

Let c∗ = max{β0
µ , β0µ, 1}. We can prove in the same manner that

(3.12)

2|G3(t, W̃M,N (t)) + G4(t, W̃M,N (t)) + G5(t, W̃M,N (t))|
≤ cc∗(M−2q+(βN)1−r)Bq,r

β,Ω(W (t))

+ γ2||W̃M,N (t)||2Ω +
1
2
β0µ||∂vW̃M,N (t)||2Ω.
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On the other hand, by using (2.29) and (2.30), we observe that if wM,N (0) =
∗PM,N,β,ΩW0, then

(3.13)
||W̃M,N (0)||2Ω ≤ ||∗PM,N,β,ΩW0 − W0||2Ω + ||W0 − P 1

M,N,β,ΩW0||Ω
≤ c(M−2q + (βN)1−r)(∗A

q,r−1
β,Ω (W0) + B

q,r
β,Ω(W0)).

Because of (2.31), the same estimate is valid if wM,N (0) = ∗∗PM,N,β,ΩW0.
For simplicity of statements, we shall use the notation

E(u(t)) = ||u(t)||2Ω +
∫ t

0

(β0µ||∂vu(ξ)||2Ω + |||v| 12 u(ξ)||2L2(Γ2)
)dξ.

Let c0 = 2 + β0 + γ2 + 2γ2

β0µ . By inserting (3.10)-(3.12) into (3.9), we obtain that

(3.14)
d

dt
E(W̃M,N (t)) ≤ c0E(W̃M,N (t)) + c(M−2q + (βN)1−r)

·(c∗Bq,r
β,Ω(W (t)) + B

q,r
β,Ω(∂tW (t)) + B

q,r
β,Ω(∂xW (t))).

By multiplying (3.14) by e−c0t, integrating the resulting inequality, and using (3.13),
we reach

(3.15) E(W̃M,N (t)) ≤ cec0t(M−2q + (βN)1−r)Dq,r
β,Ω(W (t)),

where

Dq,r
β,Ω(W (t)) =

∫ t

0

e−c0ξ(c∗B
q,r
β,Ω(W (ξ)) + B

q,r
β,Ω(∂ξW (ξ)) + B

q,r
β,Ω(∂xW (ξ)))dξ

+∗A
q,r−1
β,Ω (W0) + B

q,r
β,Ω(W0).

Finally, a combination of (2.29), (2.30) and (3.15), for 0 ≤ t ≤ T , leads to

||W (t) − wM,N (t)||2Ω + β0µ

∫ t

0

||∂v(W (ξ) − wM,N (ξ))||2Ωdξ

≤ c(M−2q + (βN)1−r)(ec0tDq,r
β,Ω(W (t)) + B

q,r
β,Ω(W (t)) + β0µ

∫ t

0

B
q,r
β,Ω(W (ξ))dξ),

(3.16)

provided that Dq,r
β,Ω(W (t)) and B

q,r
β,Ω(W (t)) are finite.

We may take wM,N (0) = PM,N,β,ΩW0 in (3.3). But, in this case, wM,N (0) is not
in VM,N,β(Ω). Following the same line as before and using (2.28), we still derive an
error estimate like (3.16). But the quantity ∗A

q,r−1
β,Ω (W0) involved in the estimate

is now replaced by A
q,r−1
β,Ω (W0).

3.3. Implementation. In this subsection, we describe the implementation for
scheme (3.3) with a nonhomogeneous term f(x, v, t) at its right side. We use the
Crank-Nicolson discretization in time t, with the mesh size τ .

For simplicity of statements, we use the notation

aΩ(z, φ) = (v∂xz, φ)Ω + β0(vz, ∂vφ)Ω + γ(x∂vz, φ)Ω + β0µ(∂vz, ∂vφ)Ω.

The fully discrete scheme is as follows:

(3.17)

⎧⎪⎪⎨
⎪⎪⎩

1
τ

(wM,N (t + τ ) − wM,N (t), φ)Ω +
1
2
aΩ(wM,N (t + τ ) + wM,N (t), φ)

=
1
2
(f(t + τ ) + f(t), φ)Ω, t = 0, τ, 2τ, . . . , T − τ,

wM,N (0) = ∗∗PM,N,β,ΩW0.
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Let

AΩ(z, u) =
1
2
τaΩ(z, u) + (z, u)Ω, GΩ(z, u) = −1

2
τaΩ(z, u) + (z, u)Ω.

Then, at each time step, we need to solve the equation
(3.18)

AΩ(wM,N (t), φ) = GΩ(wM,N (t−τ ), φ)+
1
2
τ (f(t)+f(t−τ ), φ)Ω, ∀φ ∈ VM,N,β(Ω).

For convenience, we denote L̃(0,β)
l (v) by L̃(β)

l (v). Let

ψ
(β)
1,l (v) = L̃(β)

l (v) − L̃(β)
l+1(v), ψ

(β)
2,l (v) = L̃(β)

l (−v) − L̃(β)
l+1(−v), 0 ≤ l ≤ N − 1,

η1,m(x) = Lm(x) + Lm+1(x), η2,m(x) = Lm(x) − Lm+1(x), 0 ≤ m ≤ M − 1,

and

G
(1,β)
k,l (x, v) =

{
η1,k(x)ψ(β)

1,l (v), in Ω1,

0, in Ω2,
G

(2,β)
k,l (x, v) =

{
0, in Ω1,

η2,k(x)ψ(β)
2,l (v), in Ω2.

Obviously, G
(1,β)
k,l (x, v), G(2,β)

k,l (x, v) ∈ VM,N,β(Ω). Furthermore, let

G̃(β)
m (x, v) = (Lm(x) − Lm+2(x))e−

1
2β|v| ∈ VM,N,β(Ω), 0 ≤ m ≤ M − 2.

The functions G
(j,β)
k,l (x, v), 0 ≤ k ≤ M − 1, 0 ≤ l ≤ N − 1, j = 1, 2 and

G̃
(β)
m (x, v), 0 ≤ m ≤ M − 2, form a basis of VM,N,β(Ω).
In actual computation, we expand the numerical solution as

wM,N (x, v, t) =
M−1∑
k=0

N−1∑
l=0

v
(1)
k,l G

(1,β)
k,l (x, v) +

M−1∑
k=0

N−1∑
l=0

v
(2)
k,l G

(2,β)
k,l (x, v)

+
M−2∑
m=0

v(0)
m (t)G̃(β)

m (x, v).

Inserting the above expansion into (3.18) and taking φ = G̃
(β)
m′ (x, v) and φ =

G
(j,β)
k′,l′ (x, v), respectively, we derive a matrix form of (3.3), in which all matrices are

the tensor products of some tridiagonal symmetric matrices, tridiagonal antisym-
metric matrices, upper-triangular matrices and pentadiagonal symmetric matrices.
This feature simplifies the calculation. Indeed, this is another advantage of the
proposed algorithm.

3.4. Numerical results. We use scheme (3.17) to solve (1.1) with β0 = γ = µ = 1
and a non-homogeneous source term f(x, v, t) at the right side. We take the test
function:

W (x, v, t) = 2
1
2 (t + 2)−

1
2 (1 − x2e−

1
10 (t+1)(x|v|v+v2))e−

1
2 v2

.

This function has a jump at v = 0, but

W ∈ C∞(0, T ; C1(Ω) ∩ H2(Ω)) ⊂ L∞(0, T ; L2(Ω)) ∩ L2(0, T ; M(Ω)).

By this fact and the construction of wM,N (x, y, t), the left side of (3.16) is mean-
ingful. Further, the upper-bound of the numerical solution (cf. the right side of
(3.16)) depends on the quantities Dq,r

β,Ω(W (t)), Bq,r
β,Ω(W (t)), and so on, which are

in turn some combinations of the related norms of W , defined on the two sub-
domains. Since the above test function has a discontinuity only at v = 0 and is
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Figure 1. The errors log10 EM,N,Ω(10).
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Figure 2. The errors log10 EM,N,Ω(10).

infinitely continuous on the two subdomains, these quantities are finite for any in-
tegers r > 1, q > 0. Accordingly, the numerical solution possesses the numerical
accuracy of the order M−q + N

1−r
2 . This implies the spectral accuracy in space,

which is conformed by the results stated below; see Figures 1 and 2. It is noted
that if ∂2

vW has a discontinuity at v �= 0, then a calculation with Remark 2.1 and
(3.16) shows that the numerical accuracy is of the order M−q + N−1 at least.

Let x
(1)
M,l and x

(2)
M,l be the zeros of the polynomials LM (x)+LM+1(x) and LM (x)−

LM+1(x), respectively. ρ
(1)
M,l and ρ

(2)
M,l stand for the Christoffel numbers of the

corresponding Legendre interpolations. Meanwhile, v
(1,β)
N,k and v

(2,β)
N,k are the roots

of the polynomials L(0,β)
N+1(v) and L(0,β)

N+1(−v), respectively. ω
(1,β)
N,k and ω

(2,β)
N,k are

the Christoffel numbers of the corresponding generalized Laguerre interpolations.
Furthermore, let ω̃

(1,β)
N,k = eβv

(1,β)
N,k ω

(1,β)
N,k , ω̃

(2,β)
N,k = e−βv

(2,β)
N,k ω

(2,β)
N,k , and

||u||M,N = (
2∑

j=1

M∑
l=0

N∑
k=0

u2(x(j)
M,l, v

(j,β)
N,k )ρ(j)

M,lω̃
(j,β)
N,k )

1
2 .

The numerical errors are measured by the following discrete norm:

EM,N (t) = ||W (t) − wM,N (t)||M,N ≈ ||W (t) − wM,N (t)||L2(Ω).

In Figure 1, we plot the errors log10 EM,N (t) with N = 5M , t = 10 and β = 3.
Clearly, the errors decay fast when M and N increase and τ decreases. It is seen
that for the fixed time step size τ = 0.1 and the small mode M ≤ 17, the total
numerical errors are dominated by the approximation errors in the space, and so
they decay fast as M increases. But for M ≥ 17, the total numerical errors are
dominated by the approximation errors in time t. Thus, the numerical results keep
the same accuracy, even if M and N increase again. A similar situation happens for
τ = 0.05. However, for small τ ≤ 0.005, the total numerical errors are dominated
by the approximation errors in the space, and so they decay very fast as M and
N increase. The above facts coincide very well with the theoretical analysis in
Subsection 3.3. In particular, they show the spectral accuracy in the space of
scheme (3.3).

In Figure 2, we plot log10 EM,N (t) at t = 10, with N = 5M , τ = 0.005 and
different values of the parameter β. It seems that the errors with suitably larger β
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solution, t = 10.
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Figure 4. The numer-
ical solution, t = 10.

are smaller than those with smaller β. However, how to choose the best parameter
β is still an open problem. Roughly speaking, if the exact solution decays faster as
|v| increases, then it is better to take β larger.

In Figure 3 and Figure 4, we plot the exact solution W (x, v, t) and the numerical
solution wM,N (x, v, t) with M = 19, N = 95, τ = 0.005 and β = 3, respectively.
They demonstrate that the numerical solution fits the exact solution very well.

4. Concluding remarks

In this paper, we proposed the composite generalized Laguerre-Legendre spec-
tral method for the Fokker-Planck equation in an infinite channel, which plays an
important role in many fields. The numerical results demonstrated the spectral
accuracy in space and coincide well with the theoretical analysis.

The main advantages of the proposed approach are as follows:
• With the aid of composite generalized Laguerre-Legendre approximations, we

could deal with PDEs properly, which are of different types on different subdomains.
This trick also simplifies actual computations, especially for large modes M and N .

• Using the mixed Laguerre-Legendre approximations, we could reasonably ap-
proximate those partial differential equations that behave like parabolic equations
in one direction and behave like hyperbolic equations in the other direction.

• By using different generalized Laguerre approximations on different subdo-
mains, we could exactly match the singularities of coefficients appearing in the
underlying differential equations, which degenerate and grow up in different ways
on different subdomains. Consequently, we could deal with the problems on the
whole domain properly.

• The adjustable parameter β involved in the generalized Laguerre approxima-
tion enables us to fit the asymptotic behaviors of exact solutions at infinity closely.

• By using different Legendre approximations on different subdomains, we could
fit different kinds of boundary conditions, as imposed in the underlying problems.

Although we only considered the Fokker-Planck equation, the main idea and
techniques developed in this paper are also applicable to many other problems of
non-standard types. In particular, the results on some quasi-orthogonal approxi-
mations are very appropriate for various spectral and pseudospectral methods with
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domain decompositions, as well as nonlinear problems and exterior problems; e.g.,
see [20, 30].

Appendix

We can follow the same line as in [26] to prove the existence, uniqueness and
regularity of the solution of (3.1). We give the sketch of the proof as follows.

Step I. Let ML be a family of finite-dimensional spaces, which approximates the
space M consistently as L −→ ∞ . We consider the auxiliary problem
(A1)⎧⎪⎪⎨
⎪⎪⎩

(∂tWL(t), φ)Ω − (vWL(t), ∂xφ)Ω + β0(vWL(t), ∂vφ)Ω + γ(x∂vWL(t), φ)Ω

+β0µ(∂vWL(t), ∂vφ)Ω +
∫

Γ2

|v|WL(·, v, t)φ(·, v)dv = 0, ∀ φ ∈ ML, 0 < t ≤ T,

WL(0) = WL,0,

where ||WL,0 − W0||L2
v2+1

(Ω) −→ 0 as L −→ ∞.
Taking φ = 2WL in (A1), we obtain that

∂t||WL(t)||2Ω + 2β0µ||∂vWL(t)||2Ω + ||WL(t)||2L2
|v|(Γ2)

= β0||WL(t)||2L2(Ω),

whence

||WL(t)||2Ω + 2β0µ
∫ t

0
||∂vWL(ξ)||2Ωdξ +

∫ t

0
||WL(ξ)||2

L2
|v|(Γ2)

dξ

= β0

∫ t

0
||WL(t)||2L2(Ω)dξ + ||WL,0||2Ω ≤ β0

∫ t

0
||WL(t)||2L2(Ω)dξ + c||W0||2L2(Ω).

By the Gronwall inequality, WL, ∂vWL and WL|Γ2 remain in some bounded sets
of L∞(0, T ; L2(Ω)), L2(0, T ; L2(Ω)) and L2(0, T ; L2

|v|(Γ2)), respectively. Accord-
ingly, we can extract a subsequence, still denoted by WL, such that for certain
W ∗,

WL −→ W ∗ in L2(0, T ; L2(Ω)) weak,

∂vWL −→ ∂vW ∗ in L2(0, T ; L2(Ω)) weak,

WL −→ W ∗ in L∞(0, T ; L2(Ω)) weak star,

WL|Γ2 −→ W ∗|Γ2 in L2(0, T ; L2
|v|(Γ2)) weak,

∂tWL −→ ∂tW
∗ in L2(0, T ; L2(Ω)) weak.

Then by a standard compactness argument, we know that (3.1) has a solution W
such that
(A2)
W ∈ L∞(0, T ; L2(Ω)), ∂vW ∈ L2(0, T ; L2(Ω)), W |Γ1 = 0, W |Γ2 ∈ L2(0, T ; L2

|v|(Γ2)).

Step II. In the sense of distributions, the solution of (3.1) satisfies

(A3) ∂tW+v∂xW−β0∂v(vW )+γx∂vW−β0µ∂2
vW = 0, (x, v) ∈ Ω, 0 < t ≤ T.

Following the same line as in [26], we multiply (A3) by 2v2W and integrate the
result by parts to derive that

∂t||W (t)||2L2
v2(Ω) + β0||W (t)||2L2

v2 (Ω) + ||W (t)||2L2
|v|3 (Γ2)

+ 2β0µ||∂vW (t)||2L2
v2 (Ω)

= −2γ

∫
Ω

xv2W (t)∂vW (t)dxdv − 4β0µ

∫
Ω

vW (t)∂vW (t)dxdv

≤ β0µ||∂vW (t)||2L2
v2 (Ω) +

2γ2

β0µ
||W (t)||2L2

v2(Ω) + 8β0µ||W (t)||2L2(Ω).
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Integrating the above inequality with respect to t, we obtain that

||W (t)||2
L2

v2 (Ω)
+ β0µ

∫ t

0
||∂vW (ξ)||2

L2
v2(Ω)

dξ +
∫ t

0
||W (ξ)||2

L2
|v|3(Γ2)

dξ

≤ | 2γ2

β0µ
− β0|

∫ t

0

||W (ξ)||2L2
v2(Ω)dξ + 8β0µ

∫ t

0

||W (ξ)||2L2(Ω)dξ + ||W0||2L2
v2 (Ω).

By (A2), the last two terms of the above inequality are bounded. Therefore, we
use the Gronwall inequality to conclude that
(A4)
W ∈ L∞(0, T ; L2

v2(Ω)), ∂vW ∈ L2(0, T ; L2
v2(Ω)), W |Γ2 ∈ L2(0, T ; L2

|v|3(Γ2)).

The previous statements imply that (3.1) has at least a solution in L∞(0, T ; L2(Ω))∩
L2(0, T ; M̃(Ω)). The uniqueness of the solution is clear. Since (3.1) is a linear
problem, we can verify that if W0 is smoother, then the solution is also smoother.
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