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A COVERING SYSTEM WITH LEAST MODULUS 25

DONALD JASON GIBSON

Abstract. A collection of congruences with distinct moduli, each greater than
1, such that each integer satisfies at least one of the congruences, is said to be
a covering system. A famous conjecture of Erdös from 1950 states that the
least modulus of a covering system can be arbitrarily large. This conjecture
remains open and, in its full strength, appears at present to be unattackable.
Most of the effort in this direction has been aimed at explicitly constructing
covering systems with large least modulus. Improving upon previous results of
Churchhouse, Krukenberg, Choi, and Morikawa, we construct a covering sys-
tem with least modulus 25. The construction involves a large-scale computer
search, in conjunction with two general results that considerably reduce the

complexity of the search.

1. Introduction

A collection of congruences with distinct moduli, each greater than 1, such that
each integer satisfies at least one of the congruences, is said to be a covering system.
The requirement that the moduli be distinct and greater than 1 is what makes
covering systems an interesting and nontrivial subject; indeed, it is not obvious that
there exist any covering systems. The first occurrence of covering systems appears
to be in a 1950 paper of Erdös [4], showing that the congruences {0 mod 2, 0 mod
3, 1 mod 4, 3 mod 8, 7 mod 12, 23 mod 24} form a covering system. Erdös used
this result to answer a question of Romanoff, showing that there exists an infinite
arithmetic progression consisting only of odd numbers, no term of which can be
written as a prime plus a power of 2.

Aside from its intrinsic interest, the study of covering systems is motivated by
problems in seemingly unrelated areas. In addition to the Romanoff problem, cov-
ering systems arise in similar representation problems from additive number the-
ory (e.g., Sierpiński [21]) and irreducibility questions for certain polynomials (e.g.,
Schinzel [19], Filaseta [7]). Covering systems have surprising connections to finite
geometry (e.g., Berger, Felzenbaum, and Fraenkel [1], and Simpson and Zeilberger
[22]), group theory (e.g., Korec and Znám [12]), and error-correcting codes (e.g.,
Schönheim [20]). For more on these applications, we refer the reader to the surveys
of Znám [25] and Porubský and Schönheim [17].

Erdös remained interested in covering systems throughout his life, and he posed
several problems and conjectures about such systems (see, for example, the section
on Covering Congruences in [6]), the most famous of which is the following:
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Least Modulus Conjecture. There exist covering systems with least modulus
arbitrarily large.

Erdös [5] offered $1000 for a solution to the Least Modulus Conjecture. Indeed,
he began the section in [5] pertaining to covering congruences by stating “I start
with my favourite problem...”. The Least Modulus Conjecture remains unsolved
and seems to be an extremely hard problem.

The first systematic attack on the Least Modulus Conjecture is due to Church-
house [3] in 1968. Using a computer, he found covering systems with least modulus
m1 = 2, . . . , 9. The system with least modulus 9 uses the divisors of 604, 800 =
27 × 33 × 52 × 7 as moduli.

Next, in 1971, Krukenberg [13] gave examples of covering systems with least
modulus m1 = 2, . . . , 18. The system with m1 = 18 uses the divisors of

27 × 33 × 52 × 72 × 112 × 132 × 172 × 19 = 475, 371, 719, 222, 400

as moduli. Krukenberg remarked, “The structure at this stage is, to say the least,
quite complicated and not easy to visualize.”

At roughly the same time, Choi [2] used a theoretical result to find a covering
system with least modulus 20. He wrote, “It is conceivable that a further elabora-
tion of the method of the present paper is capable of producing a more favorable N
than 20 but the amount of computations may then become prohibitive.” Neither
Krukenberg nor Choi appears to have used computers to aid in the search.

Using a different theoretical approach, in 1981, Morikawa [15] (also see [14])
exhibited a covering system with least modulus 24. The papers containing this
claim appeared in an obscure Japanese publication and are somewhat difficult to
follow.

A result of Stockmeyer and Meyer [23] relates covering systems to a famous prob-
lem from computational complexity. Specifically, they established that determining
whether a given set of congruences forms a covering system is co-NP-complete.

On the theoretical side, Filaseta, Ford, Konyagin, Pomerance, and Yu [8] showed
in recent work that, for a covering system to exist with least modulus m1, the
number of congruences in the system must be very large, in the sense that the
sum of the reciprocals of the moduli tends to infinity if m1 tends to infinity. (Easy
density considerations show that the sum of the reciprocals is greater than or equal
to 1.)

In this paper (also see the author’s thesis [9]), we construct a covering system
with least modulus 25. This improves both the acknowledged record of Choi and
Morikawa’s claim of 24. By a different method, Nielsen [16] exhibits a covering
system with least modulus 36.

In Sections 2 and 3, we prove two results which show that, subject to certain
conditions, a set of congruences that is an almost cover, in the sense that it covers
N save for certain sparse arithmetic progressions, or that it covers N but allows
some congruences to have the same moduli, can be transformed into a legitimate
covering system with distinct moduli.

In Section 4, we describe the algorithm used to produce the covering system. Our
basic approach is a greedy algorithm. Used by Churchhouse to exhibit covering
systems with least modulus 9 and smaller, the method remains applicable and
effective today. With today’s computers, a least modulus of the order of the mid
teens is attainable, but a pure greedy search seems incapable of reaching the values
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18 and 20 of Krukenberg and Choi. To construct a covering system with least
modulus 25, we therefore employ a combination of this method and the two results
from Sections 2 and 3.

In Section 5, we describe the implementation of the algorithm.
In Section 6, we present our main result, which establishes a new record for the

Least Modulus Conjecture by exhibiting a covering system with a least modulus of
25.

We believe the methods we use here are applicable to other problems on covering
systems, and we plan on investigating some of these problems in future work. For
this reason, we have stated and proved the results in Sections 2 and 3 in a slightly
more general form than what we will need here.

2. Converting almost covers to covers: First method

In this section, we present a result, Proposition 1, based on ideas from Morikawa’s
paper [14], which, in turn, have their origins in Krukenberg’s work (see Theorems
6.1 and 6.2 in [13]).

The main result of this section, Proposition 1, depends on Lemmas 1 and 2.
To simplify the statements of the results in this section, we define, for a set of

congruences C, µ(C) as the least modulus appearing in C, i.e.,

µ(C) = m1 if C = {ai mod mi : 1 ≤ i ≤ k},(2.1)
m1 ≤ m2 ≤ · · · ≤ mk.

Trivially, a congruence 0 mod p in a set of congruences can be replaced by pr−1

congruences mod pr which replace the modulus p by a larger one (if r > 1) at the
expense of using this larger modulus multiple times. Lemma 1 shows that under
certain conditions, a set of congruences can be transformed in a similar manner, but
without having this increase in multiplicity. Where the initial set of congruences C
in some sense misses the progression 0 mod pe, the resulting set of congruences C′

misses a much sparser progression, 0 mod pe+r.

Lemma 1. Let L = peQ, where p is a prime, e ∈ N, and (p, Q) = 1. Let C be a
set of congruences whose moduli are distinct divisors of L.

Let r ∈ N, let Dp and D′
p be the sets of congruences defined by

Dp = {j mod pe : 0 ≤ j ≤ pe−1 − 1},(2.2)

D′
p = {j mod pe+r : 0 ≤ j ≤ pe−1 − 1},(2.3)

and let K be a set of congruences whose moduli are prime power divisors of Q.
If C ∪ Dp ∪ K covers N, then there exists a set of congruences C′ having the

following properties:

(i) The moduli of the congruences in C′ are distinct divisors of prL.
(ii) µ(C′) = µ(C).
(iii) C′ ∪ D′

p ∪ K covers N.

Proof. We shall construct C′ by augmenting the given set of congruences C by sets
of r new congruences. Here each set of r new congruences will correspond to a
congruence a mod m from C with pe‖m, where e is the positive integer specified in
the hypotheses of the lemma.
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1130 DONALD JASON GIBSON

Specifically, fix a congruence a mod m from C with pe‖m. Let x, y, and b be
defined (via the division algorithm) by

a ≡ xpe−1 + b mod pe, 0 ≤ x ≤ p − 1, 0 ≤ b ≤ pe−1 − 1,(2.4)

a ≡ y mod
m

pe
, 0 ≤ y ≤ m

pe
− 1.(2.5)

We define a set Cm of r new congruences by

Cm = {bt(m) mod ptm : 1 ≤ t ≤ r},

with bt = bt(m) satisfying

bt ≡ xpe+t−1 + b mod pe+t,(2.6)

bt ≡ y mod
m

pe
.(2.7)

Since, by the hypothesis pe‖m, we have (pe+t, m/pe) = 1, the Chinese Remainder
Theorem guarantees that this system has a solution bt and that the solution is
unique modulo ptm.

We now define C′ by

(2.8) C′ = C ∪
⋃

a mod m∈C
pe‖m

Cm.

We need to show that this system satisfies properties (i)–(iii) of the lemma.
Observe that a modulus of C′ is either a modulus of C, or it is of the form

ptm, 1 ≤ t ≤ r, where m ranges over those moduli of C with pe‖m. Since, by
assumption, the moduli of C are distinct, those of C′ are also distinct. Moreover,
since, by hypothesis, each modulus m is a divisor of L, the latter moduli are divisors
of prL. Hence property (i) holds.

Property (ii), that C and C′ have the same least modulus, holds trivially, since
the new moduli are all larger than the smallest modulus m in C, and each modulus
in C is also a modulus in C′.

It remains to show (iii), i.e., that C′ ∪ D′
p ∪ K covers N. To that end, fix n ∈ N,

and first suppose that for each j with 0 ≤ j ≤ pe−1 − 1 we have n �≡ j mod pe.
Hence, n is not covered by Dp. Since C ∪Dp ∪K covers N, n must be covered by a
congruence from C ∪ K. By (2.8), this same congruence belongs to C′ ∪ K, and so
n is covered by C′ ∪ D′

p ∪ K.
Now suppose that n ≡ j mod pe for some j such that 0 ≤ j ≤ pe−1 − 1. Then

pf‖(n−j) for some f ≥ e. We consider two cases, namely f ≥ e+r and e ≤ f < e+r.
In the first case, we have pf‖(n − j) with f ≥ e + r, so that

n ≡ j mod pe+r.

Since 0 ≤ j ≤ pe−1 − 1, n is covered by a congruence from D′
p.

In the second case, we have pf‖(n − j) with e ≤ f < e + r. Let n′ be a solution
to the system

n′ ≡ n − j

pf
pe−1 + j mod pe,(2.9)

n′ ≡ n mod
L

pe
.(2.10)
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Such a solution is guaranteed to exist by the Chinese Remainder Theorem, since,
by assumption, L = peQ with (p, Q) = 1, and so (pe, L/pe) = 1. Since (n− j)/pf �≡
0 mod p and 0 ≤ j ≤ pe−1 − 1, we have n′ �≡ 0, 1, . . . , pe−1 − 1 mod pe, and so n′ is
not covered by Dp. Since C ∪Dp ∪K covers N, n′ must be covered by a congruence
in C or in K. If n′ is covered by a congruence in K, (2.10) yields that n is covered by
the same congruence, since the moduli in K are prime power divisors of Q = L/pe.
It remains therefore to consider the case when n′ is covered by some congruence in
C, say n′ ≡ a mod m ∈ C. We will show that n is covered by some congruence from
C′.

To that end, we first show that we may assume that pe‖m. If not, we can write
m = pαw, with (p, w) = 1 and 0 ≤ α < e, since, by assumption, pe is the largest
power of p dividing any of the moduli in C. By (2.9), we have

(2.11) n′ ≡ j ≡ n mod pα.

By (2.10), we have

(2.12) n′ ≡ n mod w.

Combining (2.11) and (2.12) gives

n′ ≡ n mod pαw,

and so n ≡ a mod m. Since the congruence a mod m belongs to C, and hence to
C′, n is covered by C′ ∪ D′

p ∪ K.
Therefore, we may assume that pe‖m. Setting t = f − e + 1, we claim that the

congruence bt(m) mod ptm ∈ C′ covers n. To see this, note that by (2.4) and (2.5),
n′ ≡ a mod m is equivalent to

n′ ≡ a ≡ xpe−1 + b mod pe,(2.13)

n′ ≡ a ≡ y mod
m

pe
.(2.14)

Comparing (2.13) with (2.9) yields that b = j and

(2.15) x ≡ n − j

pf
mod p.

From (2.15), we get

(2.16) xpe+t−1 ≡ n − j mod pe+t,

or equivalently,

(2.17) n ≡ xpe+t−1 + j ≡ bt(m) mod pe+t.

From (2.10), we get

(2.18) n ≡ n′ mod
m

pe
.

Combining (2.18) with (2.14) and (2.7) yields

(2.19) n ≡ n′ ≡ y ≡ bt(m) mod
m

pe
.

By (2.17) and (2.19), we have

n ≡ bt(m) mod ptm,

and so n is covered by a congruence from C′. This concludes the proof of the claim
that C′ ∪ D′

p ∪ K covers N. �
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Lemma 2. Let L =
∏s

i=1 pei
i , where p1 < · · · < ps are primes, and, for 1 ≤ i ≤ s,

we have ei ∈ N. Let C be a set of congruences whose moduli are distinct divisors of
L.

For 1 ≤ i ≤ s, let ri ∈ N, and let D and D′ be the sets of congruences defined by

D =
s⋃

i=1

Fi,(2.20)

D′ =
s⋃

i=1

Gi,(2.21)

with each Fi and Gi defined by

Fi = {j mod pei
i : 0 ≤ j ≤ pei−1

i − 1},(2.22)

Gi = {j mod pei+ri
i : 0 ≤ j ≤ pei−1

i − 1}.(2.23)

If C ∪ D covers N, then there exists a set of congruences C′ having the following
properties:

(i) The moduli of the congruences in C′ are distinct divisors of
∏s

i=1 pei+ri
i .

(ii) µ(C′) = µ(C).
(iii) C′ ∪ D′ covers N.

Proof. We proceed by induction, applying Lemma 1 a total of s times. Specifically,
we shall show that for each k with 1 ≤ k ≤ s, there exists a set of congruences C(k)

whose moduli are distinct divisors of L
∏k

i=1 pri
i , with µ(C(k)) = µ(C), and such

that
C(k) ∪ Gk ∪ K(k)

covers N, where

K(k) =
k−1⋃

i=1

Gi ∪
s⋃

i=k+1

Fi,(2.24)

(2.25)

with each Gi and Fi defined by (2.23) and (2.22), respectively.
The result of the lemma follows with the choice C′ = C(s).
We begin by applying Lemma 1 with p = p1, e = e1, Q =

∏s
i=2 pei

i , r = r1, and
with Dp and D′

p defined as in Lemma 1, i.e.,

Dp = F1,(2.26)

D′
p = G1.(2.27)

Define the set of congruences K = K(1) by

K =
s⋃

i=2

Fi.

Observe that we have
Dp ∪ K = F1 ∪ K = D,

where D is the set of congruences defined by (2.20). By hypothesis, C ∪ Dp ∪ K
= C ∪ D covers N, so that by Lemma 1, there exists a set of congruences C′ whose
moduli are distinct divisors of prL, with µ(C′) = µ(C), and such that C′ ∪ D′

p ∪ K
covers N. We set C(1) = C′, and note that D′

p = G1.
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Suppose now that after k applications of Lemma 1, we have obtained a set of
congruences C(k) whose moduli are distinct divisors of L

∏k
i=1 pri , with µ(C(k)) =

µ(C), and such that
C(k) ∪ Gk ∪ K(k)

covers N, where Gk and K(k) are defined by (2.23) and (2.24), respectively.
We apply Lemma 1 to the set of congruences C(k), with p = pk+1, e = ek+1,

Q =
∏k

i=1 pei+ri
i

∏s
i=k+2 pei

i , r = rk+1, and with Dp and D′
p defined as in Lemma 1,

i.e.,

Dp = Fk+1,(2.28)

D′
p = Gk+1.(2.29)

Define the set of congruences K = K(k+1) by

K(k+1) =
k⋃

i=1

Gi ∪
s⋃

i=k+2

Fi.

Note that we have

Gk ∪ K(k) = Gk ∪
k−1⋃

i=1

Gi ∪
s⋃

i=k+1

Fi

=
k⋃

i=1

Gi ∪
s⋃

i=k+1

Fi

= Fk+1 ∪ K(k+1).

By the induction hypothesis,

C(k) ∪ Gk ∪ K(k) = C(k) ∪ Fk+1 ∪ K(k+1)

covers N, and so, by Lemma 1, there exists a set of congruences C′ whose moduli
are distinct divisors of L

∏k+1
i=1 pri , with µ(C′) = µ(C), and such that C′ ∪ D′

p ∪ K
covers N. Defining C(k+1) = C′ and noting that D′

p = Gk+1, we then have that

C(k+1) ∪ Gk+1 ∪ K(k+1)

covers N. Property (i) of Lemma 1 guarantees that the moduli of C(k+1) are distinct,
and property (ii) of Lemma 1 gives µ(C(k+1)) = µ(C(k)), completing the induction.

�

Proposition 1. Let L =
∏s

i=1 pei
i , where p1 < · · · < ps are primes, and, for

1 ≤ i ≤ s, we have ei ∈ N. Let C be a set of congruences whose moduli are distinct
divisors of L.

Let D be the set of congruences defined by

(2.30) D =
s⋃

i=1

{j mod pei
i : 0 ≤ j ≤ pei−1

i − 1}.

If C ∪D covers N, then for any w > 1 such that (w, L) = 1 there exist constants
Ji = Ji(C, w), 1 ≤ i ≤ s, and a set of congruences C′′ with the following properties:
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(i) The moduli of the congruences in C′′ are distinct, and are divisors either of∏s
i=1 pJi

i or of the form pji

i w, ji ≤ Ji.
(ii) µ(C′′) = µ(C).
(iii) C′′ covers N.

Here µ(·) is defined, as in (2.1), as the least modulus of a given set of congruences.

Remarks. (i) The moduli from C are distinct, but the moduli from D need not be
distinct. In particular, a modulus pei

i from D will appear with multiplicity pei−1
i ,

which is larger than 1 when ei > 1. Moreover, it is possible that a modulus pei
i

appearing in a congruence from D also appears as a modulus in a congruence from C.
By the proposition, the congruences from D can be replaced by other congruences
whose moduli are distinct amongst themselves and also avoid the moduli from C.

(ii) With minor changes, the quantity L in both Lemma 2 and Proposition 1
can be replaced by Q

∏s
i=1 pei

i , where, for 1 ≤ i ≤ s, we have (pi, Q) = 1. Such a
modification might be useful when constraints other than size restrict the moduli
under consideration.

(iii) Apart from the constraints w > 1 and (w, L) = 1, the choice of w is arbitrary.
The flexibility in the choice of w allows Proposition 1 to be applicable in the search
for a covering system when the moduli of the system are required to meet particular
divisibility constraints, but this flexibility is not always needed. For the Least
Modulus Conjecture, any w meeting these constraints is sufficient.

Proof. We shall apply Lemma 2 to the set of congruences C to obtain a set of
congruences C′, and we shall augment C′ by additional congruences to form C′′ and
ensure that C′′ covers N, as described below.

Let hi ∈ N be minimal such that phi
i w > µ(C), let Ji = hi + pei−1

i w, and let
ri = Ji − ei. We apply Lemma 2 with this choice of ri to the set of congruences C,
obtaining a set of congruences C′ satisfying properties (i)–(iii) of Lemma 2.

Fix i and ki with 1 ≤ i ≤ s and 0 ≤ ki ≤ pei−1
i − 1. We form the w additional

congruences

ai,j,ki
mod pj

iw, hi + kiw < j ≤ hi + (ki + 1)w,(2.31)

with

ai,j,ki
≡ ki mod pj

i ,

ai,j,ki
≡ j mod w.

We define the set of congruences C′′ to be the set C′ together with the totality
of the congruences (2.31) with 1 ≤ i ≤ s and 0 ≤ ki ≤ pei−1

i − 1. We need to show
that C′′ satisfies properties (i)–(iii) of the proposition.

Property (i) follows from (2.31) and from property (i) of Lemma 2. Since, by
our choice of hi, phi

i w > µ(C) for 1 ≤ i ≤ s, property (ii) follows from property (ii)
of Lemma 2.

It remains to show that property (iii) holds, i.e., that C′′ covers N. Let n ∈ N.
If n is not covered by a congruence from C′, then by property (iii) of Lemma 2, we
have n ≡ ki mod pei+ri

i for some i with 1 ≤ i ≤ s and ki with 0 ≤ ki ≤ pei−1
i − 1.

We shall show that n is covered by one of the congruences from (2.31). Indeed,
note that, since n ≡ j mod w for some j with hi + kiw < j ≤ hi + (ki + 1)w,
we have n ≡ ai,j,ki

mod pj
iw.This concludes the proof of property (iii) and the

proposition. �
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3. Converting almost covers to covers: Second method

Proposition 2. Let L =
∏s

i=1 pei
i with p1 < p2 < · · · < ps primes. Let r ∈ N, let

ps < q1 < · · · < qr denote r primes exceeding ps, and let m1, . . . , mr be r positive
integers satisfying

(3.1) mi|L, d(mi) ≥ qi − i + 1,

where d(mi) is the number of divisors of mi. Let C be a set of congruences with
distinct moduli, with each modulus a divisor of L. If, for some choice of congruences
{ai mod mi : 1 ≤ i ≤ r},

C ∪
r⋃

i=1

{ai mod mi}

covers a set A ⊂ N, then there exists a system of congruences C′ with the following
properties:

(i) The moduli of the congruences in C′ are distinct divisors of L
∏r

j=1 qj.
(ii) µ(C′) ≥ min(µ(C), q1).
(iii) C′ covers A.

Here µ(·) is defined, as in (2.1), as the least modulus of a given set of congruences.

Remarks. (i) In practice, the moduli of C will be most of the divisors m of L (e.g.,
all m exceeding a certain bound). Thus, each element of the sequence {mi}r

i=1 is
typically a modulus that already appears in C. The point of the proposition is that
congruences to such repeated moduli can be replaced by congruences to unique
moduli.

(ii) The sequence {mi}r
i=1 may contain repeated elements. (See the example

below.)
(iii) A reasonable (efficient) choice for the primes qi appearing in the proposition

is the first r primes exceeding ps. Similarly, in our application, we choose mi to be
minimal satisfying (3.1).

Proof. We shall use induction to establish, for each i with 1 ≤ i ≤ r, the following
statement:

(Pi) For every arithmetic progression a mod m with d(m) ≥ qi − i + 1, there
exists a set of congruences Ki(a, m) whose moduli are distinct divisors of
m

∏i
j=1 qj , with each modulus having largest prime divisor qi, and such

that Ki(a, m) covers the progression a mod m.
We first show that the result of the proposition follows from this statement. Assume
(Pi) holds for each i, and set

C′ = C ∪
r⋃

i=1

Ki(ai, mi).

Observe that, by (Pi), any congruence a mod m from the set Ki(ai, mi) has
m|mi

∏i
j=1 qj , and, furthermore, since mi|L, we have m|L

∏r
j=1 qj . This estab-

lishes the first part of (i).
To establish the second part of (i), i.e., the distinctness of the moduli, we need

to consider three types of moduli pairs: the pairs from a single Ki, those from
Ki and Kj with i and j distinct, and pairs with one modulus from C and another
from some Ki. First, (Pi) ensures that the moduli from any single Ki(ai, mi) are
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1136 DONALD JASON GIBSON

distinct. Next, if a mod m is a congruence from Ki(ai, mi) and a′ mod m′ is a
congruence from Kj(aj , mj) with i < j, then the moduli m and m′ are distinct,
since by (Pi) and (Pj), m has largest prime divisor qi, while m′ has largest prime
divisor qj . Finally, if a mod m is a congruence from C and a′ mod m′ is a modulus
from Ki(ai, mi), then m and m′ are distinct, since qi|m′ but qi � m. Thus, (i) holds.

To see that (ii) holds, i.e., that µ(C′) = min(µ(C), q1), notice that if a mod m is
a congruence from Ki(ai, mi), then by (Pi), we have qi|m, and so m ≥ q1.

Finally, since, by hypothesis,

C ∪
r⋃

i=1

{ai mod mi}

covers A, and, by (Pi), Ki(ai, mi) covers ai mod mi for each i, it follows that C′

covers A, giving property (iii).
It remains to establish (Pi) for 1 ≤ i ≤ r. We begin with i = 1, and fix an

arithmetic progression a mod m, with m such that d(m) ≥ q1.
Let d1 < · · · < dτ , with τ = d(m), be the divisors of m. Note that we have

τ = d(m) ≥ q1, and so we can define K1(a, m) as the set of congruences

b11 mod d1q1

...
b1q1 mod dq1q1,

(3.2)

where b1j = b1j(a, m) is a solution to the congruence system

b1j ≡ a mod m,

b1j ≡ j mod q1.

Since m|L and (L, q1) = 1, we have (m, q1) = 1, and so such a solution exists by
the Chinese Remainder Theorem.

We must show that (P1) holds. By construction, the moduli of K1(a, m) are
distinct divisors of mq1, and each has largest prime divisor q1. To see that K1(a, m)
covers a mod m, note that any n with n ≡ a mod m satisfies n ≡ j mod q1 for some
j = 1, . . . , q1, and so n ≡ b1j mod mq1, thus establishing (P1).

Note that if the sequence {mi}r
i=1 were only required to satisfy

mi|L, d(mi) ≥ qi

(instead of (3.1)), the result would follow by the same argument. In order to obtain
the stated form, additional arguments are needed.

Now suppose that 2 ≤ i ≤ r and that (P1), . . . , (Pi−1) have been established.
To establish (Pi), first fix an arithmetic progression a mod m, with m such that
d(m) ≥ qi − i + 1. Let d1 < · · · < dτ , with τ = d(m), be the divisors of m. Note
that we have τ = d(m) ≥ qi − i + 1, and so we can define K′

i(a, m) as the set of
qi − i + 1 congruences

bii mod di1qi

...
biqi

mod diqi−i+1qi,

(3.3)
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where bij = bij(a, m) is a solution to the congruence system

bij ≡ a mod m,

bij ≡ j mod qi.
(3.4)

As before, the Chinese Remainder Theorem guarantees the existence of a solution.
Since the i − 1 arithmetic progressions

bij mod mqi, 1 ≤ j ≤ i − 1,

are not covered by K′
i(a, m), we need to augment K′

i(a, m) by additional congruences
to cover these progressions. To do so, we begin by fixing j with 1 ≤ j ≤ i−1. Since

d(m) ≥ qi − i + 1 ≥ qj − j + 1,

where the latter inequality holds because q1 < · · · < qr, by (Pj), there exists a set
of congruences Kj(a, m) whose moduli are distinct divisors of miq1 . . . qj with each
modulus having largest prime divisor qj , and such that Kj(a, m) covers a mod m.

We shall now describe a set K′′
j (a, m) that covers the arithmetic progression

bij mod mqi. For each a′ mod m′ ∈ Kj(a, m), form a corresponding congruence
a′′ mod m′′, where m′′ = m′qi and a′′ is a solution to the congruence system

a′′ ≡ a′ mod m′,

a′′ ≡ j mod qi,
(3.5)

the existence of such a solution being guaranteed by the Chinese Remainder The-
orem, and we let K′′

j (a, m) be the set of all such congruences a′′ mod m′′. Since,
by (Pj), Kj(a, m) covers a mod m, it is clear from (3.4) and (3.5) that K′′

j (a, m)
covers bij mod mqi. Moreover, the moduli of K′′

j (a, m) are distinct divisors of
m(q1 . . . qj)qi, with each modulus having largest prime divisor qi and second largest
prime divisor qj .

Finally, we define Ki(a, m) by

Ki(a, m) = K′
i(a, m) ∪

i−1⋃

j=1

K′′
j (a, m),

and we must show that the requirements of (Pi) have been met. By (3.3), (3.5), and
the construction of the sets K′′

j (a, m) with 1 ≤ j ≤ i− 1, we get that the moduli of
Ki(a, m) are divisors of m

∏i
j=1 qj , with each modulus having largest prime divisor

qi.
To see the distinctness of the moduli from Ki(a, m), first note that the moduli

from any particular K′′
j (a, m) with 1 ≤ j ≤ i − 1 are distinct as noted previously

in the construction of the sets K′′
j (a, m), and that the moduli from K′

i(a, m) are
distinct by inspection of (3.3). That the moduli from Ki(a, m) are distinct now
follows by observing that if m′ is a modulus from K′′

j (a, m) and m′′ is a modulus
from K′′

h(a, m), then m′ and m′′ both have qi as their largest prime divisor, but
differ in their second largest prime divisor, as noted in the construction of the sets
K′′

j (a, m).
To conclude the proof, it remains to show that Ki(a, m) covers a mod m. As

before, if n ≡ a mod m, then n ≡ j mod qi for some j = 1, . . . , qi. If i ≤ j ≤ qi,
then n is covered by one of the congruences from (3.3), and if 1 ≤ j ≤ i − 1, then
n is covered by K′′

j (a, m).
This establishes (Pi), and the result follows by induction. �
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Example 1. In this example, we shall examine the conditions of Proposition 2
when it is applied to L = 25 · 33 · 52 · 72 · 11 · 13 · 17, the number that we shall later
use as a starting point in the search for a covering system with least modulus 25.
Since, in that search, the primes 19 and 23 will be needed for a different purpose
than that of this theorem, we take qi to be the i-th prime greater than 23, i.e.,
q1 = 29, q2 = 31, and so on. Note that (3.1) restricts qi to qi − i + 1 ≤ d(L). Since
d(L) = 1728, a small calculation yields r = 297 and q297 = 2017 as the maximal
values satisfying (3.1).

We seek to find moduli {mi}297
i=1 satisfying (3.1), and, for our application, we

shall take mi to be minimal, subject to this constraint.
We begin by finding m1, i.e., the smallest modulus that Proposition 2 guarantees

as available for use. With q1 = 29, we have q1 − 1 + 1 = 29, and (3.1) requires
that d(m1) ≥ 29. A short calculation gives that the smallest divisor m of L with
d(m) ≥ 29 is 720, and so m1 = 720. Indeed, since d(720) = 30 and q2 − 2 + 1 =
31 − 2 + 1 = 30, we get m2 = 720 as well.

For m3, we seek the smallest m with m|L such that d(m) ≥ q3 − 3 + 1 =
37 − 3 + 1 = 35. Another short calculation gives that the smallest divisor with
this property is 1260, with d(1260) = 36. Similarly, one can compute that to have
d(m) ≥ q4 − 4 + 1 = 41 − 4 + 1 = 38, we take m = m4 = 1680, with d(1680) = 40.

We can proceed in this manner to compute the remaining moduli from this
theorem, m5 ≤ · · · ≤ m297. The divisor condition (3.1) is very restrictive, e.g.,
q256 = 1697, and (3.1) requires that d(m) ≥ 1697 − 256 + 1 = 1442. The smallest
modulus m with m|L that has this property is L itself, and so we get that m256 =
m257 = · · · = m297 = L. Thus, Proposition 2 gives us modulus L with multiplicity
297 − 256 + 1 = 42.

4. Algorithmic approach

In the search for a covering system using divisors of a candidate number L as
moduli for the congruences, an exhaustive search fails because of the enormous
size of the search space of possible sets of congruences. To reduce the size of the
space considered, i.e., to consider only a small subset of the many possible lists
of congruences, we employ a greedy algorithm. The results of Sections 2 and 3
significantly enhance the greedy search, and these results are easily incorporated
into the algorithm.

In the context of covering systems, a greedy algorithm proceeds by selecting
a “good” choice of residue class for a given modulus, dependent upon previously
selected congruences, but independent of the possible choices for the remaining
moduli, as we shall describe below.

We begin with a candidate L, and we let 1 < m1 < · · · < mk be divisors of
L that we wish to use as moduli. Note that any system of congruences to such
moduli is equivalent to a union of congruences to modulus L, and so it suffices to
work within the interval I = [0, L − 1]. Each of the mi congruences with modulus
mi is considered in turn; the congruence ai mod mi that eliminates the most of
what remains from the interval I is selected, and the part of the interval I that
ai mod mi covers is removed from consideration.

We use two methods to resolve ties between equally good classes. The first
method uses a pseudorandom function, which is equivalent to using a (possibly
complicated) deterministic rule. Specifically, if a tie occurs between two classes,
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then the currently examined class replaces the earlier one, or not, according to the
outcome of the equivalent of a coin flip.

The second method uses an easily described deterministic rule to resolve ties.
If several congruences of the form a mod m, 0 ≤ a ≤ m − 1, tie for efficiency, we
select the class with the largest value of a.

The decision to use the largest of the classes rather than the smallest of the
classes is arbitrary, as is the use of a deterministic procedure rather than a random
one. Since, in practice, there seems to be little to indicate that any one of the tied
classes works better than the others, what matters is that some choice is made.
The use of randomized choices simply provides an easy way of making different
choices during different runs of the program, thus creating some level of flexibility.

A key enhancement to this algorithm is the use of Propositions 1 and 2. Propo-
sition 1 supplies additional congruences, given by (2.30), and the corresponding
arithmetic progressions in I can be marked as covered before further calculations
for any of the moduli m1, . . . , mk.

Proposition 2 allows certain moduli to be used with multiplicity greater than 1.
For such moduli, instead of selecting the single best class, we select the appropriate
number of “best” classes, ordering the classes by how much each covers of what
remains from the interval I.

Tables 1–4 illustrate the dramatic impact the use of Proposition 1 has on the
complexity of the search. Although Churchhouse [3] used a greedy algorithm in
his search, he did not use any further theoretical enhancements. He found covering
systems with least modulus m1 = 2, . . . , 9, as indicated below. In Tables 1–4, m1

is the least modulus, and the congruences of the associated covering system have
moduli that are divisors of L.

Table 1. Churchhouse’s Least Modulus Results

m1 L L

2 22 · 3 12

3 23 · 3 · 5 120

4 24 · 32 · 5 720

5 23 · 32 · 5 · 7 2, 520

6 25 · 32 · 5 · 7 10, 080

7 25 · 33 · 5 · 7 30, 240

8 24 · 33 · 52 · 7 75, 600

9 27 · 33 · 52 · 7 604, 800

Using Proposition 1 and applying a similar greedy search, we can afford to use
much smaller values of L. However, it should be noted that the covering system
produced in this manner contains congruences whose moduli are divisors of a (pos-
sibly quite large) multiple of L. We do not claim that these values of L are optimal
in any sense. Note that, in the last row of Table 2, m1 = 9, but 9 � L. The congru-
ence modulo 9 in the corresponding covering system is superfluous, but is included
in the system for purposes of comparison to Table 1.
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Table 2. Least Modulus Results via Proposition 1

m1 L L

2 2 2

3 2 · 3 6

4 22 · 3 12

5 2 · 3 · 5 30

6 23 · 3 · 5 120

7 22 · 3 · 5 · 7 420

8 23 · 3 · 5 · 7 840

9 24 · 3 · 5 · 7 1, 680

In contrast to Churchhouse, Krukenberg did not use a computer to search for
covering systems. In [13], Krukenberg found covering systems with least modulus
m1 = 2, . . . , 18. Table 3 summarizes the results with m1 = 10, . . . , 18. Note that
many of the values of L are too large for easy computer implementation.

Table 3. Krukenberg’s Least Modulus Results

m1 L L

10 25 · 33 · 52 · 7 · 11 1, 663, 200

11 25 · 33 · 52 · 7 · 11 · 13 21, 621, 600

12 25 · 33 · 52 · 7 · 112 · 13 237, 837, 600

13 25 · 33 · 52 · 7 · 112 · 13 · 17 4, 043, 239, 200

14 25 · 33 · 52 · 7 · 112 · 132 · 17 52, 562, 109, 600

15 25 · 33 · 52 · 72 · 112 · 132 · 17 367, 934, 767, 200

16 25 · 33 · 52 · 72 · 112 · 132 · 17 · 19 6, 990, 760, 576, 800

17 27 · 33 · 52 · 72 · 112 · 132 · 17 · 19 27, 963, 042, 307, 200

18 27 · 33 · 52 · 72 · 112 · 132 · 172 · 19 475, 371, 719, 222, 400

For these values of m1, a greedy algorithm and Proposition 1 allow one to obtain
covering systems with far smaller L. Again, note that the covering system produced
contains congruences whose moduli are divisors of a large multiple of L. In many
ways, e.g., total number of moduli used, Krukenberg’s covering systems are superior
to those obtained in this computational manner.

As before, in several rows of Table 4, we have m1 � L. The congruence modulo
m1 in the corresponding covering system is superfluous, but is included for purposes
of comparison to the other table.
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Table 4. Least Modulus Results via Proposition 1

m1 L L

10 23 · 32 · 52 · 7 12, 600

11 24 · 32 · 52 · 7 25, 200

12 24 · 32 · 52 · 7 25, 200

13 24 · 33 · 52 · 7 · 11 831, 600

14 24 · 33 · 52 · 7 · 11 831, 600

15 24 · 33 · 52 · 7 · 11 831, 600

16 24 · 33 · 52 · 7 · 11 · 13 10, 810, 800

17 24 · 33 · 52 · 7 · 11 · 13 10, 810, 800

18 24 · 33 · 52 · 7 · 11 · 13 10, 810, 800

5. Implementation

Although a greedy algorithm is easy to describe, the implementation of it in
the context of the Least Modulus Problem requires some care. Using divisors of a
large number L as moduli for a set of congruences and working within the interval
I = [0, L − 1], since, as noted earlier, any system of congruences to such moduli is
equivalent to a union of congruences to modulus L, the main problem is the size
of L (in the sense of magnitude and number of divisors). To store such an interval
I requires space proportional to L. Also, in examining each possible residue class
for a given modulus, the entire interval I must be examined, which requires time
proportional to L. While a program that works with moderate values of L, e.g.,
L = 25 · 33 · 52 · 72 · 11 · 13 · 17, might require a significant portion of a computer’s
memory and have running time on the order of days, the same program cannot
possibly work with the larger values L′ = L · 19 or L′′ = L · 19 · 23.

An implementation of a greedy algorithm must overcome this size obstacle, and
it must also be able to incorporate Propositions 1 and 2. To overcome the problem
of large values of L, we note that if a moderate value of L in the program could
produce a set of congruences that almost covers N, in the sense of density, then it is
more economical to keep track of those few members of I that are not covered than
to keep track of the entirety of I. Thus, we use two programs: a primary program
that, given L, produces a set of congruences (by means of a greedy algorithm) that
covers a high density subset of N, and a secondary program that, given L′ with
L|L′ along with the short list of elements of I not covered by the congruences from
the primary program, produces (also by a greedy algorithm) a set of congruences
that either covers what remains, or covers a large subset of what remains. This
secondary program can be used multiple times, if needed.

To use Proposition 1, the programs must be able to keep track of the congruences
D from the theorem. Since the moduli of the congruences in D are divisors of L,
these congruences are equivalent to a union of congruences with modulus L, and
thus can be represented as a subset of the interval I (that, by Proposition 1, need
not be covered by the congruences produced by the greedy search). In the primary
program, those integers in I that satisfy one of the congruences from D can be
marked as covered, and a greedy algorithm can then proceed in its normal fashion,
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producing a subset of I that is covered. With the above choice of parameters, this
approach indeed succeeds in producing covering systems with least modulus 18,
and possibly slightly beyond 18. However, if the moduli are restricted to be greater
than or equal to 25 (in an attempt to obtain a cover with least modulus 25), then
it appears unavoidable that a small subset of I is left uncovered. We therefore
employ a secondary program that uses the parameter L′ = L · 19 in place of L
and with the uncovered part of I as input. These uncovered classes modulo L that
serve as input are equivalent to a larger set of uncovered classes modulo L′, and
these classes can be checked and removed from consideration if already covered by
a congruence from D′.

In addition to Proposition 1, we can also appeal to Proposition 2, which allows
certain moduli to be used more than once in congruences. The programs must be
able to provide for multiple selections of the residue class for such moduli. When
required to determine congruences for a modulus with multiplicity larger than 1,
instead of selecting the single best class, a program can select the appropriate
number of “good” classes, either by a strict ordering of classes by efficiency, or by
some randomized process.

As indicated above, the primary program keeps track of an interval I = [0, L −
1], marking integers in I as covered as new congruences are selected. Since an
integer in I is either covered or not covered, we use an array of bits for the internal
representation of I.

The primary program selects congruences by means of a greedy algorithm. It
examines the moduli in order of increasing size of modulus, and for each modulus
m, it examines the efficiency of a mod m for increasing a. Since m is potentially
large, the program does not store the efficiency of each of these m congruences
before making a selection. Instead, although it examines all of the congruences,
the program keeps a running tally of only a small number (the multiplicity of the
modulus) of potentially “good” classes. If a new class is more efficient than one
of these, then it replaces the old one, with ties being resolved through a random
algorithm. (Specifically, if a tie occurs, then the new class replaces the old one,
or not, according to the outcome of the equivalent of a coin flip.) The primary
program uses both Propositions 1 and 2.

The secondary program keeps track of a list of those integers not covered by
any congruence from a given list (e.g., a list generated by the primary program),
removing integers from the list as new congruences are selected. Intended for use
after the primary program and primarily for the search for a covering system with
least modulus 25, the advantage of this secondary program is that, instead of storing
the full interval I in memory, it only stores the potentially much smaller number of
integers in I that are yet to be covered. The secondary program uses Proposition 1,
but not Proposition 2. (In practice, the latter theorem is not needed at this stage,
and it would be far less effective here than in its first application in the primary
program.)

The secondary program, like the primary program, selects congruences via a
greedy algorithm. Specifically, it examines the available moduli in order of increas-
ing size and selects the congruence that is the most efficient, i.e., the congruence
that covers the most of the currently uncovered integers.
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6. Results

In this section, we establish the existence of a covering system with least modulus
25. To do so, we shall require Propositions 1 and 2, in addition to substantial
computer assistance. Roughly speaking, the idea is to use a greedy algorithm
to direct a computer search, using the sets of congruences associated with the
two propositions to make the search easier, as described in Section 4. Practical
constraints, explained in Section 5, force this to be a multi-stage process.

Theorem 1. There exists a covering system with least modulus 25.

Proof. We shall establish the existence of a covering system C′′ with least modulus
25 by applying Proposition 1, with Q = 1, L = 25 ·33 ·52 ·72 ·11·13·17·19·23·

∏297
j=1 qj ,

where q1 = 29 < · · · < q297 = 2017 are the first 297 primes greater than 23, and
with C to be described below. Note that in applying Proposition 1, we need to
ensure that C ∪D covers N, where D is given by (2.30) and appears in Appendix B.

We shall describe C in three stages. The first part of the set of congruences C will
be derived (via Proposition 2) from those congruences appearing in Appendix C1,
which were generated by the primary program. These congruences have moduli
which are divisors (in fact, all divisors greater than or equal to 25) of L1 = 25 · 33 ·
52 · 72 · 11 · 13 · 17, but the moduli are not all distinct. By Proposition 2, some (see
Example 1) of the moduli may be repeated. By applying Proposition 2 to the set
of congruences in Appendix C, we obtain, but do not list, a set of congruences C′

whose moduli are divisors (all greater than or equal to 25) of L1 ·
∏297

j=1 qj , distinct,
and such that they cover the same arithmetic progressions listed in Appendix C.
We shall return to C′ later.

The congruences in Appendix C do not cover N, but together with those congru-
ences from D whose moduli divide L1, they cover all but 278, 477 classes modulo
L1. These classes are part of the input to the secondary program.

The second part of the set of congruences C appears in Appendix D, and was
generated by the secondary program. These congruences have moduli which are
divisors (all greater than 25) of L2 = 25 ·33 ·52 ·72 ·11 ·13 ·17 ·19 = L1 ·19, divisible
by 19, distinct, and distinct from those moduli appearing in Appendix C. The
congruences from that appendix (together with those congruences from D whose
moduli divide L1) left 278, 477 classes modulo L1 not covered, and these 278, 477
classes are equivalent to 278, 477 · 19 = 5, 291, 063 classes modulo L2 that are not
covered. The congruences listed in Appendix D, along with the congruence 0 mod
19 from D, cover all but 52, 295 classes modulo L2 of those 5, 291, 063 remaining
classes. These 52, 295 classes are part of the input to another instance of the
secondary program.

The final part of the set of congruences C appears in Appendix E. These congru-
ences have moduli (all greater than 25) which are divisors of L3 = L1·19·23 = L2·23,
divisible by 23, distinct, and distinct from those moduli appearing in Appendix C
and Appendix D. The congruences from those appendices (together with the mod-
uli from D whose moduli divide L2) left 52, 295 classes modulo L2 not covered,
and these classes are equivalent to 52, 295 · 23 = 1, 202, 785 classes modulo L3 that
are not covered. The congruences listed in Appendix E, along with the congruence
0 mod 23 from D, cover these remaining classes.

1Appendices C, D, and E can be seen on the web in the on-line supplement to this paper.
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In short, the congruences from Appendices B (the congruences D from Propo-
sition 1), C, D, and E together cover all of N. We take the set C to be the set of
congruences C′ together with the congruences in Appendices D and E. The set of
congruences C′ not only covers the same arithmetic progressions as the congruences
in Appendix C, but also has distinct moduli, as guaranteed by Proposition 2. Also,
these moduli are divisors of L1 ·

∏297
j=1 qj , and hence are distinct from those moduli

appearing in Appendices D and E, since the moduli from C′ are not divisible by 19
and 23, respectively.

Finally, since we have a set of congruences C whose moduli are distinct and
divisors of L, and such that C ∪ D covers N, where D is given by (2.30) (also see
Appendix B), we may take w = 2027 (the least prime larger than any of those
appearing as a factor of L), since (w, L) = 1, in Proposition 1 to obtain that there
exists a covering system with least modulus 25. �

Appendix A. Explanation of the tables

These tables contain the lists of congruences used in Theorem 1. There are a total
of four lists of congruences: the congruences D from Proposition 1, the congruences
generated by the primary program, and two sets of congruences generated by the
secondary program.

The first list, Table 5 in Appendix B, contains the congruences D from Proposi-
tion 1, which depend on the particular choice in Theorem 1 of L = 25 · 33 · 52 · 72 ·
11 · 13 · 17 · 19 · 23 ·

∏297
j=1 qj , with qj the first 297 primes greater than 23. These

congruences are of the form a mod pe, 0 ≤ a ≤ pe−1 − 1, where pe‖L. Note that
these congruences occur in a hypothesis of Proposition 1 and do not actually belong
to the covering system with least modulus 25.

The second list, Appendix C, contains congruences whose moduli are divisors
(in fact, all divisors greater than or equal to 25) of L1 = 25 · 33 · 52 · 72 · 11 · 13 · 17,
as described in Theorem 1. Notice that some of the moduli are repeated multiple
times; e.g., modulus 720 occurs 3 times, while modulus L1 occurs 43 times. These
moduli are marked by an asterisk. This list is part of the output of the primary
program.

The third list, Appendix D, contains congruences whose moduli are divisors (all
greater than 25) of L2 = L1 · 19, as described in Theorem 1. All of these moduli
are distinct. This list is part of the output of the secondary program.

The fourth list, Appendix E, contains congruences whose moduli are divisors (all
greater than 25) of L3 = L1 · 19 · 23 = L2 · 23, as described in Theorem 1. Like the
moduli of the previous list, all of these moduli are distinct. This list is part of the
output of the secondary program, a different instance of the program than the one
that generated the congruences in Appendix D.

Appendix B. Congruences coming from Proposition 1

The proof of Proposition 2 contains an application of Proposition 1 with L =
25 ·33 ·52 ·72 ·11 ·13 ·17 ·19 ·23 ·

∏297
j=1 qj , where q1, . . . , q297 are the first 297 primes

greater than 23. In Proposition 1, D is defined by

D =
s⋃

i=1

{j mod pei

i : 0 ≤ j ≤ pei−1
i − 1},

where pei
i ‖L. Here s = 9+297 = 306, and D contains 16+9+5+7+5+297 = 339

congruences.
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Table 5. List of Congruences D from Proposition 1

a mod 25 0 ≤ a ≤ 15

a mod 33 0 ≤ a ≤ 8

a mod 52 0 ≤ a ≤ 4

a mod 72 0 ≤ a ≤ 6

0 mod p 11 ≤ p ≤ 2017
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17. Š. Porubský and J. Schönheim, Covering systems of Paul Erdős. Past, present and future,
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