Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



Evaluating Jacquet's $ \mathbf{{\rm GL}(n)}$ Whittaker function

Author: Kevin A. Broughan
Journal: Math. Comp. 78 (2009), 1061-1072
MSC (2000): Primary 33C15, 22E30, 11E57, 11E76
Published electronically: August 28, 2008
MathSciNet review: 2476570
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Algorithms for the explicit symbolic and numeric evaluation of Jacquet's Whittaker function for the $ GL(n,\mathbb{R})$ based generalized upper half-plane for $ n\ge 2$, and an implementation for symbolic evaluation in the Mathematica package GL(n)pack, are described. This requires a comparison of the different definitions of Whittaker function which have appeared in the literature.

References [Enhancements On Off] (What's this?)

  • 1. Peter A. Becker, On the integration of products of Whittaker functions with respect to the second index, J. Math. Phys. 45 (2004), no. 2, 761–773. MR 2029096, 10.1063/1.1634351
  • 2. Dorian Goldfeld, Automorphic forms and 𝐿-functions for the group 𝐺𝐿(𝑛,𝐑), Cambridge Studies in Advanced Mathematics, vol. 99, Cambridge University Press, Cambridge, 2006. With an appendix by Kevin A. Broughan. MR 2254662
  • 3. Solomon Friedberg, Poincaré series for 𝐺𝐿(𝑛): Fourier expansion, Kloosterman sums, and algebreo-geometric estimates, Math. Z. 196 (1987), no. 2, 165–188. MR 910824, 10.1007/BF01163653
  • 4. Dorian Goldfeld, Automorphic forms and 𝐿-functions for the group 𝐺𝐿(𝑛,𝐑), Cambridge Studies in Advanced Mathematics, vol. 99, Cambridge University Press, Cambridge, 2006. With an appendix by Kevin A. Broughan. MR 2254662
  • 5. I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products, 6th ed., Academic Press, Inc., San Diego, CA, 2000. Translated from the Russian; Translation edited and with a preface by Alan Jeffrey and Daniel Zwillinger. MR 1773820
  • 6. Taku Ishii, A remark on Whittaker functions on 𝑆𝐿(𝑛,ℝ), Ann. Inst. Fourier (Grenoble) 55 (2005), no. 2, 483–492. MR 2147897
  • 7. Hervé Jacquet, Fonctions de Whittaker associées aux groupes de Chevalley, Bull. Soc. Math. France 95 (1967), 243–309 (French). MR 0271275
  • 8. N. N. Lebedev, Special functions and their applications, Dover Publications, Inc., New York, 1972. Revised edition, translated from the Russian and edited by Richard A. Silverman; Unabridged and corrected republication. MR 0350075
  • 9. Frank W. J. Olver, Asymptotics and special functions, AKP Classics, A K Peters, Ltd., Wellesley, MA, 1997. Reprint of the 1974 original [Academic Press, New York; MR0435697 (55 #8655)]. MR 1429619
  • 10. I. I. Pjateckij-Šapiro, Euler subgroups, Lie groups and their representations (Proc. Summer School, Bolyai János Math. Soc., Budapest, 1971) Halsted, New York, 1975, pp. 597–620. MR 0406935
  • 11. J. A. Shalika, The multiplicity one theorem for 𝐺𝐿_{𝑛}, Ann. of Math. (2) 100 (1974), 171–193. MR 0348047
  • 12. I. H. Sloan and T. R. Osborn, Multiple integration over bounded and unbounded regions, J. Comput. Appl. Math. 17 (1987), no. 1-2, 181–196. MR 884269, 10.1016/0377-0427(87)90046-X
  • 13. Eric Stade, On explicit integral formulas for 𝐺𝐿(𝑛,𝑅)-Whittaker functions, Duke Math. J. 60 (1990), no. 2, 313–362. With an appendix by Daniel Bump, Solomon Friedberg and Jeffrey Hoffstein. MR 1047756, 10.1215/S0012-7094-90-06013-2
  • 14. Eric Stade, Mellin transforms of 𝐺𝐿(𝑛,ℝ) Whittaker functions, Amer. J. Math. 123 (2001), no. 1, 121–161. MR 1827280
  • 15. Eric Stade, Archimedean 𝐿-factors on 𝐺𝐿(𝑛)×𝐺𝐿(𝑛) and generalized Barnes integrals, Israel J. Math. 127 (2002), 201–219. MR 1900699, 10.1007/BF02784531
  • 16. A. H. Stroud, Approximate calculation of multiple integrals, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1971. Prentice-Hall Series in Automatic Computation. MR 0327006
  • 17. Audrey Terras, Harmonic analysis on symmetric spaces and applications. I, Springer-Verlag, New York, 1985. MR 791406
  • 18. E. T. Whittaker and G. N. Watson, A course of modern analysis. An introduction to the general theory of infinite processes and of analytic functions: with an account of the principal transcendental functions, Fourth edition. Reprinted, Cambridge University Press, New York, 1962. MR 0178117

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 33C15, 22E30, 11E57, 11E76

Retrieve articles in all journals with MSC (2000): 33C15, 22E30, 11E57, 11E76

Additional Information

Kevin A. Broughan
Affiliation: Department of Mathematics, University of Waikato, Hamilton, New Zealand

Keywords: K-Bessel function, Whittaker function, Jacquet Whittaker function, symbolic evaluation, quadrature, unbounded domain.
Received by editor(s): November 6, 2006
Received by editor(s) in revised form: March 3, 2008
Published electronically: August 28, 2008
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.