Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

   
 

 

Computation of Jacobsthal's function $ h(n)$ for $ n<50$.


Author: Thomas R. Hagedorn
Journal: Math. Comp. 78 (2009), 1073-1087
MSC (2000): Primary 11N25, 11Y55
Published electronically: November 20, 2008
MathSciNet review: 2476571
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ j(n)$ denote the smallest positive integer $ m$ such that every sequence of $ m$ consecutive integers contains an integer prime to $ n$. Let $ P_n$ be the product of the first $ n$ primes and define $ h(n)=j(P_n)$. Presently, $ h(n)$ is only known for $ n\leq 24$. In this paper, we describe an algorithm that enabled the calculation of $ h(n)$ for $ n< 50$.


References [Enhancements On Off] (What's this?)

  • 1. H. Cramér, On the order of magnitude of the difference between consecutive prime numbers, Acta. Arith. 2, 396-403, (1936).
  • 2. P. Erdős, On the integers relatively prime to 𝑛 and on a number-theoretic function considered by Jacobsthal, Math. Scand. 10 (1962), 163–170. MR 0146125
  • 3. Daniel M. Gordon and Gene Rodemich, Dense admissible sets, Algorithmic number theory (Portland, OR, 1998) Lecture Notes in Comput. Sci., vol. 1423, Springer, Berlin, 1998, pp. 216–225. MR 1726073, 10.1007/BFb0054864
  • 4. J. Haugland, private correspondence, July 2005.
  • 5. H. Iwaniec, On the error term in the linear sieve, Acta Arith. 19 (1971), 1–30. MR 0296043
  • 6. Henryk Iwaniec, On the problem of Jacobsthal, Demonstratio Math. 11 (1978), no. 1, 225–231. MR 499895
  • 7. Ernst Jacobsthal, Über Sequenzen ganzer Zahlen, von denen keine zu 𝑛 teilerfremd ist. I, II, III, Norske Vid. Selsk. Forh. Trondheim 33 (1961), 117–124, 125–131, 132–139 (1961) (German). MR 0125047
  • 8. N.J.A. Sloane, (2007), The On-Line Encyclopedia of Integer Sequences, published electronically at http://www.research.att.com/~njas/sequences/, Sequence A048670.
  • 9. Hans-Joachim Kanold, Über eine zahlentheoretische Funktion von Jacobsthal, Math. Ann. 170 (1967), 314–326 (German). MR 0209247
  • 10. H.-J. Kanold, Neuere Untersuchungen über die Jacobsthal-Funktion 𝑔(𝑛), Monatsh. Math. 84 (1977), no. 2, 109–124 (German, with English summary). MR 0453672
  • 11. Helmut Maier and Carl Pomerance, Unusually large gaps between consecutive primes, Trans. Amer. Math. Soc. 322 (1990), no. 1, 201–237. MR 972703, 10.1090/S0002-9947-1990-0972703-X
  • 12. János Pintz, Very large gaps between consecutive primes, J. Number Theory 63 (1997), no. 2, 286–301. MR 1443763, 10.1006/jnth.1997.2081
  • 13. S.M. Pulimood, and T.R. Hagedorn, Applying the Grid Computing Paradigm within a Liberal Arts Academic Environment. In Proceedings of the 2007 International Conference on Grid Computing Applications (GCA 2007) held in conjunction with The 2007 World Congress in Computer Science, Computer Engineering, and Applied Computing, Las Vegas, USA, June 2007.
  • 14. R. A. Rankin, The difference between consecutive prime numbers. V, Proc. Edinburgh Math. Soc. (2) 13 (1962/1963), 331–332. MR 0160767
  • 15. Harlan Stevens, On Jacobsthal’s 𝑔(𝑛)-function, Math. Ann. 226 (1977), no. 1, 95–97. MR 0427212

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 11N25, 11Y55

Retrieve articles in all journals with MSC (2000): 11N25, 11Y55


Additional Information

Thomas R. Hagedorn
Affiliation: Department of Mathematics and Statistics, The College of New Jersey. P.O. Box 7718, Ewing, New Jersey 08628-0718
Email: hagedorn@tcnj.edu

DOI: http://dx.doi.org/10.1090/S0025-5718-08-02166-2
Keywords: Jacobsthal function, killing sieve
Received by editor(s): October 9, 2007
Received by editor(s) in revised form: March 23, 2008
Published electronically: November 20, 2008
Article copyright: © Copyright 2009 by T. R. Hagedorn