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DERIVING A NEW DOMAIN DECOMPOSITION METHOD
FOR THE STOKES EQUATIONS

USING THE SMITH FACTORIZATION

VICTORITA DOLEAN, FRÉDÉRIC NATAF, AND GERD RAPIN

Abstract. In this paper the Smith factorization is used systematically to
derive a new domain decomposition method for the Stokes problem. In two
dimensions the key idea is the transformation of the Stokes problem into a
scalar bi-harmonic problem. We show, how a proposed domain decomposi-
tion method for the bi-harmonic problem leads to a domain decomposition
method for the Stokes equations which inherits the convergence behavior of
the scalar problem. Thus, it is sufficient to study the convergence of the scalar
algorithm. The same procedure can also be applied to the three-dimensional
Stokes problem.

As transmission conditions for the resulting domain decomposition method
of the Stokes problem we obtain natural boundary conditions. Therefore it
can be implemented easily.

A Fourier analysis and some numerical experiments show very fast conver-
gence of the proposed algorithm. Our algorithm shows a more robust behavior
than Neumann-Neumann or FETI type methods.

1. Introduction

The last decade has shown, that Neumann-Neumann type algorithms, FETI,
and BDDC methods are very efficient domain decomposition methods. Most of
the early theoretical and numerical work has been carried out for scalar symmetric
positive definite second order problems; see for example [6], [13]–[15], [23]. Then,
the method was extended to other problems, like the advection-diffusion equations
[1, 7], plate and shell problems [27] or the Stokes equations [26, 22].

In the literature one can also find other preconditioners for the Schur comple-
ment of the Stokes equations (cf. [2, 26]). Moreover, there exist some Schwarz-type
algorithms for non-overlapping decompositions (cf. [16, 19, 20, 24]). A more com-
plete list of domain decomposition methods for the Stokes equations can be found
in [22, 28]. Also FETI [11] and BDDC methods [12] are applied to the Stokes
problem with success.

Our work is motivated by the fact that in some sense the domain decomposition
methods for Stokes are less optimal than the domain decomposition methods for
scalar problems. Indeed, in the case of two subdomains consisting of the two half-
planes it is well known that the Neumann-Neumann preconditioner is an exact
preconditioner for the Schur complement equation for scalar equations like the
Laplace problem (cf. [23]). A preconditioner is called exact, if the preconditioned
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operator simplifies to the identity. Unfortunately, this does not hold in the vector
case. It is shown in [18] that the standard Neumann-Neumann preconditioner for
the Stokes equations does not possess this property.

Our aim in this paper is the construction of a method, which preserves this
property. Thus, one can expect a very fast convergence for such an algorithm; and
indeed, the numerical results clearly support our approach. This paper explains the
ideas of [4] in more detail. For an application to the compressible Euler equations
see [3].

Let us give a short outline of the paper. In Section 2 we introduce the Stokes
equations. Concentrating on the two-dimensional case, these equations are trans-
formed into a bi-harmonic operator with the help of the Smith factorization. Then,
in Section 3 we first introduce an iterative domain decomposition method for the
bi-harmonic equations and we show how it can be used for the Stokes equations.
Moreover, in Section 4 we discuss briefly, how this approach can be extended to
the linearized Navier-Stokes equations (Oseen equations). In the case of two sub-
domains we were able to derive an algorithm which converges independently of the
Reynolds number in two iterations. Most likely, ongoing research will show that we
will retrieve this behavior for more general decompositions. Then, in Section 5 the
algorithm is extended to the three-dimensional Stokes problem. A finite volume
discretization is discussed in Section 6. Section 7 is dedicated to numerical results
for the two-dimensional Stokes problem. Finally, we give some concluding remarks.

2. Equivalence between the Stokes equations

and the bi-harmonic problem

In this section we show the equivalence between the Stokes system and a fourth
order scalar problem (the bi-harmonic problem) by means of the Smith factoriza-
tion. This is motivated by the fact that scalar problems are easier to manipulate
and the construction of new algorithms is more intuitive. Additionally, the existing
theory of scalar problems can be used.

2.1. Stokes equations. We consider the stationary Stokes problem in a bounded
domain Ω ⊂ R

d, d = 2, 3. The Stokes equations are given by a velocity �u and a
pressure p satisfying

−ν∆�u + ∇p + c�u = �f in Ω,

∇ · �u = 0 in Ω,

and some boundary conditions on ∂Ω. The Stokes problem is a simple model for
incompressible flows. The right hand side of �f = (f1, . . . , fd)T ∈ [L2(Ω)]d is a
source term, ν is the viscosity and c ≥ 0 is a constant reaction coefficient. Very
often c stems from an implicit time discretization and then c is given by the inverse
of the time step size.

In the following we denote the d-dimensional Stokes operator by Sd(�v, q) :=
(−ν∆�v + c�v + ∇q,∇ · �v).

2.2. Smith factorization. Now we show that the Stokes problem can be trans-
formed into a scalar fourth order problem using the Smith factorization. We recall
the Smith factorization of a matrix with polynomial entries ([29], Theorem 1.4):

Theorem 2.1. Let n be an positive integer and A an invertible n × n matrix
with polynomial entries with respect to the variable λ: A = (aij(λ))1≤i,j≤n. Then,
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there exist matrices E, D and F with polynomial entries satisfying the following
properties:

• det(E) and det(F ) are constants,
• D is a diagonal matrix uniquely determined up to a multiplicative constant,
• A = EDF .

Here E and F are matrices, which operate on the rows, respectively, columns. The
entries of the diagonal matrix D = (dij(λ)) are given by dii = φi/φi−1, where φi is
the greatest common divisor of the determinants of all i × i submatrices of A and
φ0 = 1.

The Smith factorization is a classical tool in computer algebra and in control of
ordinary differential equations. Since its use in scientific computing is rather new,
we give here a few comments:

• Smith was an English mathematician of the end of the nineteenth century.
He worked in number theory and considered the problem of factorizing
matrices with integer entries. We give here the polynomial version of his
theorem in the special case where the matrix A is square and invertible
but the result is more general and applies as well when the matrix A is
rectangular.

• One interesting fact of the theorem is the following. By Cramer’s formula,
the inverse of A is in general a matrix with rational entries. By the Smith
factorization, we have A−1 = F−1D−1E−1. Since det(E) and det(F ) are
constants, the inverse of E and F are still matrices with polynomial entries
in λ. The rational part of the inverse of A is thus in D−1 which is an
intrinsic diagonal matrix.

• The proof of the theorem is constructive and gives an algorithm for comput-
ing matrices E, D and F . As stated in the theorem, matrix D is intrinsic
but matrices E and F are not unique.

• In the sequel, we write the Stokes equations as a matrix with partial differ-
ential operator entries applied to the unknown velocity and pressure fields.
The direction normal to the interface of the subdomains is particularized
and denoted by ∂x. Each partial differential operator is then considered as
a polynomial in the “variable ∂x” (e.g. λ is related to ∂x and λ2 to ∂xx).
It is then possible to apply the Smith factorization; see below.

Application to the two-dimensional Stokes problem. The Smith factoriza-
tion is applied to the following model problem in the whole plane R

2,

Sd(�u, p) = �g in R
2,(2.1)

|�u(�x)| → 0 for |�x| → ∞(2.2)

with the right hand side �g = (f1, f2, 0)T . Moreover, it is assumed, that the coeffi-
cients c, ν are constants.

We start with the two-dimensional case. The spatial coefficients are denoted by
x and y. In order to apply the factorization to the Stokes system, we first take
formally the Fourier transform of (2.1) with respect to y. The dual variable is
denoted by k. The Fourier transform of a function f is written as f̂ or Fyf . Thus,
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equation (2.1) yields Ŝ2(�̂u, p̂) = �̂g with �̂u = (û, v̂) and

(2.3) Ŝ2(�̂u, p̂) =

⎛⎝ −ν(∂xx − k2) + c 0 ∂x

0 −ν(∂xx − k2) + c ik
∂x ik 0

⎞⎠ ⎛⎝ û
v̂
p̂

⎞⎠ .

Considering Ŝ2 as a matrix with polynomial entries with respect to ∂x, we perform
for k �= 0 the Smith factorization. We obtain

(2.4) Ŝ2 = Ê2D̂2F̂2

with

D̂2 =

⎛⎝ 1 0 0
0 1 0
0 0 (∂xx − k2)L̂2

⎞⎠ , F̂2 =

⎛⎝ νk2 + c νik∂x ∂x

0 L̂2 ik
0 1 0

⎞⎠
and

Ê2 = T̂−1
2

⎛⎝ ikL̂2 ν∂xxx −ν∂x

0 T̂2 0
ik∂x −∂xx 1

⎞⎠
where T2 is a differential operator in the y-direction whose symbol is ik(νk2 + c).
Moreover, L̂2 := ν(−∂xx + k2) + c is the Fourier transform of L2 := −ν∆ + c.

Remark 2.2. Using this factorization, problem (2.1) can be written as

(2.5) D̂2 �̂w = Ê−1
2 �̂g, �̂w := (ŵ1, ŵ2, ŵ3)T := F̂2(�̂u, p̂)T .

From (2.5) we get ŵ1 = (Ê−1
2 �̂g)1 and ŵ2 = (Ê−1

2 �̂g)2. Noticing that

ŵ3 =
(
F̂2(�̂u, p̂)T

)
3

= v̂

the previous equation yields, after applying an inverse Fourier transform,

∆(−ν∆ + c)v = F−1
y

(
(Ê−1

2 �̂g)3
)

.

Since the matrices Ê2 and F̂2 have a determinant which is a non-zero number
(i.e. a polynomial of degree zero), the entries of their inverses are still polynomial in
∂x. Thus, applying Ê−1

2 to the right hand side �̂g, amounts to taking derivatives of
�̂g and making linear combinations of them. If the plane R is split into subdomains
R

− × R and R
+ × R, the application of Ê−1

2 and F̂−1
2 to a vector can be done

for each subdomain independently. No communication between the subdomains is
necessary.

At first glance, it is surprising that the two-dimensional Stokes equations can be
mainly characterized by the scalar fourth order differential operator ∆(−ν∆ + c).
But one should note that the stream function formulation gives the same differen-
tial equation for the stream function in the two-dimensional case (cf. [8]). More
interestingly, in the three-dimensional case the Smith factorization yields a repre-
sentation of the system as two decoupled scalar equations; cf. Section 5.1.
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3. A new algorithm for the Stokes equations

Our goal is to write for the Stokes equations on the whole plane divided into two
half-planes an algorithm converging in two iterations. Section 2.2 shows that the
design of an algorithm for the fourth order operator B := ∆L2 = ∆(−ν∆ + c) is
a key ingredient for this task. Therefore, we derive an algorithm for the operator
B and then, via the Smith factorization, we recast it in a new algorithm for the
Stokes system.

3.1. An optimal algorithm for the scalar fourth order operator. We con-
sider the following problem: Find φ : R

2 → R such that

(3.1) B(φ) = g in R
2, |φ(�x)| → 0 for |�x| → ∞

where g is a given right hand side. The domain Ω is decomposed into two half-
planes Ω1 = R

− × R and Ω2 = R
+ × R. Let the interface {0} × R be denoted by

Γ and (�ni)i=1,2 be the outward normal of (Ωi)i=1,2. The algorithm, we propose, is
given as follows:

Algorithm 3.1. We choose the initial values φ0
1 and φ0

2 such that φ0
1 = φ0

2 and
L2φ

0
1 = L2φ

0
2 on Γ. We obtain (φn+1

i )i=1,2 from (φn
i )i=1,2 by the following iterative

procedure:
Correction step. We compute the corrections (φ̃n+1

i )i=1,2 as solutions of the
homogeneous local problems

(3.2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Bφ̃n+1
1 = 0 in Ω1,

lim
|�x|→∞

|φ̃n+1
1 | = 0,

∂φ̃n+1
1

∂�n1
= γn

1 on Γ,

∂L2φ̃
n+1
1

∂�n1
= γn

2 on Γ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Bφ̃n+1
2 = 0 in Ω2,

lim
|�x|→∞

|φ̃n+1
2 | = 0,

∂φ̃n+1
2

∂�n2
= γn

1 on Γ,

∂L2φ̃
n+1
2

∂�n2
= γn

2 on Γ,

where γn
1 = −1

2

(
∂φn

1

∂�n1
+

∂φn
2

∂�n2

)
and γn

2 = −1
2

(
∂L2φ

n
1

∂�n1
+

∂L2φ
n
2

∂�n2

)
.

Updating step. We update (φn+1
i )i=1,2 by solving the local problems

(3.3)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Bφn+1

1 = g in Ω1,

lim
|�x|→∞

|φn+1
1 | = 0,

φn+1
1 = φn

1 + δn+1
1 on Γ,

L2φ
n+1
1 = L2φ

n
1 + δn+1

2 on Γ,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Bφn+1

2 = g in Ω2,

lim
|�x|→∞

|φn+1
2 | = 0,

φn+1
2 = φn

2 + δn+1
1 on Γ,

L2φ
n+1
2 = L2φ

n
2 + δn+1

2 on Γ,

where δn+1
1 =

1
2
(φ̃n+1

1 + φ̃n+1
2 ) and δn+1

2 =
1
2
(L2φ̃

n+1
1 + L2φ̃

n+1
2 ).

This algorithm has the proposed remarkable property. Formally we can show:

Proposition 3.2. Algorithm 3.1 converges in two iterations.

Proof. The equations and the algorithm are linear. It suffices to prove convergence
to zero of the above algorithm when g ≡ 0. We make use of the Fourier transform
in the y direction. First of all, as φ0

1 = φ0
2 and L2φ

0
1 = L2φ

0
2 on Γ, from (3.3)
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we obtain the same properties for φ1
1 and φ1

2. Then, note that at each step of the
algorithm φn

i satisfies the homogeneous equation in each subdomain

(3.4) B̂φ̂n
i (x, k) = (∂xx − k2)(−ν(∂xx − k2) + c)φ̂n

i (x, k) = 0.

For each k ∈ R, (3.4) is a fourth order ordinary differential equation in x. The
solution in each domain tends to 0 as |x| tends to ∞. Just in order to simplify
computations we assume c > 0. See [18] for the case c = 0. Therefore, we get

(3.5) φ̂n
1 (x, k) = αn

1 (k)e|k|x + βn
1 (k)eλ(k)x,

φ̂n
2 (x, k) = αn

2 (k)e−|k|x + βn
2 (k)e−λ(k)x

with λ(k) =
√

c/ν + k2. The first continuity relation L2φ
1
1 = L2φ

1
2 on the interface

Γ leads to α1
1(k) = α1

2(k) as

L̂2φ̂
1
i (0, k) = (−ν(∂xx − k2) + c)φ̂1

i (0, k)
= −ν(−k2 + λ2(k))β1

i (k) + c(α1
i (k) + β1

i (k)) = cα1
i (k), i = 1, 2,

and from φ1
1 = φ1

2 on Γ we finally get β1
1(k) = β1

2(k). Therefore, we can omit
the subscript indicating the number of the subdomain in α and β. Then, we can
compute γ1

1 , γ1
2 used by the correction step (3.2):

γ1
1 = −(α1(k)|k| + β1(k)λ(k)),

γ1
2 = −α1(k)|k|c.

A direct computation shows that the solutions of the correction step φ̃2
i , i = 1, 2,

whose expressions are of the form (3.5) are given by

̂̃φ2
1(x, k) = −α1(k)e|k|x − β1(k)eλ(k)x,̂̃φ2
2(x, k) = −α1(k)e−|k|x − β1(k)e−λ(k)x.

Inserting this into (3.3) shows that the right hand side of the boundary conditions
are zero. Since we assumed g ≡ 0, this shows that φ̂2

i = 0 for i = 1, 2. �

3.2. From the fourth order operator B to the Stokes system. After hav-
ing found an optimal algorithm which converges in two steps for the fourth order
operator B problem, we focus on the Stokes system (2.1)-(2.2) by translating this
algorithm into an algorithm for the Stokes system. It suffices to replace the opera-
tor B by the Stokes system and φ by the last component (F2(�u, p)T )3 of the vector
F2(�u, p)T in the boundary conditions, by using formula (2.5).

The algorithm reads:

Algorithm 3.3. We choose the initial values (�u0
1, p

0
1) and (�u0

2, p
0
2) such that

(F2(�u0
1, p

0
1)

T )3 = (F2(�u0
2, p

0
2)

T )3

and

L2(F2(�u0
1, p

0
1)

T )3 = L2(F2(�u0
2, p

0
2)

T )3

on Γ. We compute ((�un+1
i , pn+1

i ))i=1,2 from ((�un
i , pn

i ))i=1,2 by the following iterative
procedure:
Correction step. We compute the corrections ((�̃un+1

i , p̃n+1
i ))i=1,2 as the solution
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of the homogeneous local problems:
(3.6)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

S2(�̃un+1
1 , p̃n+1

1 ) = 0 in Ω1,

lim
|�x|→∞

|�̃un+1
1 | = 0,

∂(F2(�̃un+1
1 , p̃n+1

1 )T )3
∂�n1

= γn
1 on Γ,

∂L2(F2(�̃un+1
1 , p̃n+1

1 )T )3
∂�n1

= γn
2 on Γ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

S2(�̃un+1
2 , p̃n+1

2 ) = 0 in Ω2,

lim
|�x|→∞

|�̃un+1
2 | = 0,

∂(F2(�̃un+1
2 , p̃n+1

2 )T )3
∂�n2

= γn
1 on Γ,

∂L2(F2(�̃un+1
2 , p̃n+1

2 )T )3
∂�n2

= γn
2 on Γ,

where

γn
1 = −1

2

(
∂(F2(�un

1 , pn
1 )T )3

∂�n1
+

∂(F2(�un
2 , pn

2 )T )3
∂�n2

)
,

γn
2 = −1

2

(
∂L2(F2(�un

1 , pn
1 )T )3

∂�n1
+

∂L2(F2(�un
2 , pn

2 )T )3
∂�n2

)
.

Updating step. We update ((�un+1
i , pn+1

i ))i=1,2 by solving the local problems:

(3.7)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
S2(�un+1

i , pn+1
i ) = �g in Ωi,

lim
|�x|→∞

|�un+1
i | = 0,

(F2(�un+1
i , pn+1

i )T )3 = (F2(�un
i , pn

i )T )3 + δn+1
1 on Γ,

L2(F2(�un+1
i , pn+1

i )T )3 = L2(F2(�un
i , pn

i )T )3 + δn+1
2 on Γ,

where

δn+1
1 =

1
2
[(F2(�̃un+1

1 , p̃n+1
1 )T )3 + (F2(�̃un+1

2 , p̃n+1
2 )T )3],

δn+1
2 =

1
2
[L2(F2(�̃un+1

1 , p̃n+1
1 )T )3 + L2(F2(�̃un+1

2 , p̃n+1
2 )T )3].

This algorithm seems quite complex since it involves third order derivatives of
the unknowns in the boundary conditions on (F2(�̃ui, p̃i)T )3. Writing �ui = (ui, vi)
and using (F2(�̃ui, p̃i)T )3 = ṽi, it is possible to simplify it. By using the Stokes
equations in the subdomains, we can lower the degree of the derivatives in the
boundary conditions. In order to ease the presentation in Algorithm 3.4 we do
not mention that the solutions tend to zero as |�x| → ∞. If we denote the k-th
component of the unit outward normal vector �ni of Ωi by ni,k, we obtain for two
subdomains the following:

Algorithm 3.4. We choose the initial values (u0
1, v

0
1 , p0

1) and (u0
2, v

0
2 , p0

2) such that
v0
1 = v0

2 and

ν
∂u0

1

∂�n1
− p0

1n1,1 = −
(

ν
∂u0

2

∂�n2
− p0

2n2,1

)
on Γ. We compute ((un+1

i , vn+1
i , pn+1

i ))i=1,2 from ((un
i , vn

i , pn
i ))i=1,2 by the following

iterative procedure:
Correction step. We compute the corrections ((ũn+1

i , ṽn+1
i , p̃n+1

i ))i=1,2 as the
solution of the homogeneous local problems:

(3.8)

⎧⎪⎪⎨⎪⎪⎩
S2(ũn+1

1 , ṽn+1
1 , p̃n+1

1 ) = 0 in Ω1,

ν
∂ṽn+1

1

∂�n1
= γn

1 on Γ,

ũn+1
1 = γn

2,1 on Γ,

⎧⎪⎪⎨⎪⎪⎩
S2(ũn+1

2 , ṽn+1
2 , p̃n+1

2 ) = 0 in Ω2,

ν
∂ṽn+1

2

∂�n2
= γn

1 on Γ,

ũn+1
2 = γn

2,2 on Γ,
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where γn
1 = −1

2

(
ν

∂vn
1

∂�n1
+ ν

∂vn
2

∂�n2

)
and γn

2,i = (−1)i 1
2

(un
1 − un

2 ).

Updating step. We update ((un+1
i , vn+1

i , pn+1
i ))i=1,2 by solving the local problems:

(3.9)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
S2(un+1

i , vn+1
i , pn+1

i ) = �g in Ωi,

ν
∂un+1

i

∂�ni
− pn+1

i ni,1 = ν
∂un

i

∂�ni
− pn

i ni,1 + δn+1
ij on Γ,

vn+1
i = vn

i +
1
2

(ṽn
1 + ṽn

2 ) on Γ,

where δn+1
ij =

1
2

(
ν

∂ũn+1
i

∂�ni
− p̃n+1

i ni,1

)
− 1

2

(
ν

∂ũn+1
j

∂�nj
− p̃n+1

j nj,1

)
and j = 3 − i.

Lemma 3.5. Consider the model case Ω = R
2, Ω1 = R

− × R and Ω2 = R
+ × R.

We assume that all variables vanish at infinity. Then, the Algorithms 3.3 and 3.4
are equivalent.

Proof. First, notice (F2(�̃un
i , p̃n

i )T )3 = ṽn
i and (F2(�un

i , pn
i )T )3 = vn

i . Thus, the first
interface conditions of (3.6), respectively, (3.7) are obviously the same as the first
interface conditions of (3.8), respectively, the second one of (3.9).

To prove the complete equivalence between these algorithms, we start with the
local problems in Ω1 by transforming the second interface condition of the correction
step (3.6):

∂xL2ṽ
n+1
1 = −1

2
∂x (L2v

n
1 − L2v

n
2 ) on Γ.

Using the second equation of the Stokes system,

L2(F2(�un
i , pn

i )T )3 = (−ν∆ + c)vn
i = ∂ypn

i + f2, i = 1, 2,

we obtain

∂x(−∂y p̃n+1
1 ) = −1

2
∂x((−∂ypn

1 + f2) − (−∂ypn
2 + f2)),

= −1
2
∂y(−∂xpn

1 + ∂xpn
2 ) on Γ.

Interchanging the partial derivatives and using the first equation of the Stokes
system and the fact that all functions vanish at infinity, by integrating with respect
to y we get

∂y(L2ũ
n+1
1 ) = −1

2
∂y (L2u

n
1 − L2u

n
2 ) on Γ ⇔

L2ũ
n+1
1 = −1

2
(L2u

n
1 − L2u

n
2 ) on Γ.

(3.10)

Differentiating the first interface condition (3.6) with respect to y and using the
incompressibility constraint (∂y ṽn+1

i = −∂xũn+1
i , i = 1, 2) yields

(3.11) −ν∂xxũn+1
1 =

1
2
ν∂xx (un

1 − un
2 ) on Γ.

We subtract (3.11) from (3.10). Thus, we obtain

(−ν∂yy + c)ũn+1
1 = −1

2
(−ν∂yy + c)(un

1 − un
2 ) on Γ ⇔

ũn+1
1 = −1

2
(un

1 − un
2 ) on Γ,
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which is exactly the second transmission condition (3.8) of the correction step.
Next, we consider the second interface condition of the updating step (3.7).

Using again the second equation of the Stokes system we obtain:

∂ypn+1
1 = ∂ypn

1 +
1
2

(
∂y p̃n+1

1 + ∂y p̃n+1
2

)
on Γ ⇔

pn+1
1 = pn

1 +
1
2

(
p̃n+1
1 + p̃n+1

1

)
on Γ.

(3.12)

Of course, one could stop with boundary condition (3.12), but we will derive a more
natural boundary condition. Therefore, we also use the second transmission condi-
tion of (3.7) and mix both conditions. Differentiating the first interface condition
of (3.7) with respect to y gives

∂yvn+1
1 = ∂yvn

1 +
1
2
∂y

(
ṽn+1
1 + ṽn+1

2

)
on Γ.

Now, using the incompressibility constraint yields

(3.13) −ν∂xun+1
1 = −ν∂xun

1 − 1
2
ν∂x

(
ũn+1

1 + ũn+1
2

)
on Γ.

Adding (3.12) and (3.13) we end up with

−ν∂xun+1
1 + pn+1

1 = −ν∂xun
1 + pn

1

+
1
2

(
−ν∂xũn+1

1 + p̃n+1
1

)
+

1
2

(
−ν∂xũn+1

2 + p̃n+1
2

)
,

which is exactly the first transmission condition (3.9) of the updating step. The
reformulation of the initial conditions can be done analogously.

The same computations can be performed for subdomain Ω2. �

Remark 3.6. The assumption that the pressure vanishes at infinity is artificial. If
we only use that the derivatives of p vanish, then the first interface condition of the
updating step is determined only up to a constant. In practice, one could easily
avoid this problem by providing an appropriate coarse space.

In order to write the resulting algorithm in an intrinsic form, we introduce the
stress �σi(�u, p) for each subdomain Ωi on the interface for a velocity �u = (u, v), a
pressure p and the normal vector �ni. If ∂ni = ∂x, we have the following formula in
cartesian coordinates:

�σi(�u, p) = (ν
∂u

∂x
− p,

ν

2
(
∂v

∂x
+

∂u

∂y
)).

For any vector �u its normal (resp. tangential) component on the interface is
u�ni

= �u · �ni (resp. �u�τi
= (I − �ni ⊗ �ni) �u). We denote σi

�ni
:= σi

�ni
(�ui, pi) · �ni and

�σi
�τi

:= (I − �ni ⊗ �ni)�σi as the normal and tangential parts of �σi, respectively.

Moreover, we notice that boundary conditions (3.8) are equivalent to conditions
(3.14). Indeed, it suffices to differentiate w.r.t the y direction the boundary condi-
tion on the normal velocity in (3.8), multiply it by ν and add it to the boundary
condition on the normal derivative of the tangential velocity in (3.8).

We can now generalize the previous algorithm to a more general decomposition
into non-overlapping subdomains: Ω̄ =

⋃N
i=1 Ω̄i and denote by Γij = ∂Ωi ∩∂Ωj the
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interface between subdomains Ωi and Ωj , i �= j. The new algorithm for the Stokes
system reads:

Algorithm 3.7. Starting with an initial guess ((�u0
i , p

0
i ))

N
i=0 satisfying �u0

i,�τi
= �u0

j,�τj

and σi
�ni

(�u0
i , p

0
i ) = σj

�nj
(�u0

j , p
0
j) on Γij, ∀i, j, i �= j, the correction step is expressed

as follows for 1 ≤ i ≤ N :⎧⎪⎪⎪⎨⎪⎪⎪⎩
S2(�̃un+1

i , p̃n+1
i ) = 0 in Ωi,

ũn+1
i,�ni

= −1
2
(un

i,�ni
+ un

j,�nj
) on Γij ,

�σi
�τi

(�̃un+1
i , p̃n+1

i ) = −1
2
(�σi

�τi
(�un

i , p̃n
i ) + �σj

�τj
(�un

j , p̃n
j )) on Γij .

(3.14)

followed by an updating step for 1 ≤ i ≤ N :

(3.15)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

S2(�un+1
i , pn+1

i ) = �g in Ωi,

�un+1
i,�τi

= �un
i,�τi

+
1
2
(�̃un+1

i,�τi
+ �̃un+1

j,�τj
) on Γij ,

σi
�ni

(�un+1
i , pn+1

i ) = σi
�ni

(�un
i , pn

i ),

+
1
2
(σi

�ni
(�̃un+1

i , p̃n+1
i ) + σj

�nj
(�̃un+1

j , p̃n+1
j )) on Γij .

The boundary conditions in the correction step involve the normal velocity and
the tangential stress, whereas in the updating step the tangential velocity and the
normal stress are involved. As we will see in Section 5, in three dimensions the
algorithm has the same definition.

Proposition 3.8. For a domain Ω = R
2 divided into two non-overlapping half-

planes, Algorithms 3.3 and 3.7 are equivalent and both converge in two iterations.

Proof. The equivalence of both algorithms has already been shown. The conver-
gence in two steps of Algorithm 3.7 is obvious, since the algorithm was derived
directly from Algorithm 3.3 which converges in two steps. �

4. Extension to the Oseen equations

The next step is an extension of this technique to the Oseen equations{
−ν∆�u +�b · ∇�u + c�u + ∇p = �f in Ω,
∇ · �u = 0 in Ω.

(4.1)

In comparison to the Stokes equations we have added the convective term �b · ∇�u.
Now, the equation is no longer symmetric. Standard linearization techniques for
the incompressible Navier-Stokes equations lead to the Oseen problem. Therefore,
the efficient numerical solution of the Oseen problem is very important. The Oseen
operator is given by

Od(�u, p) =
(
−ν∆�u +�b · ∇�u + c�u + ∇p,∇ · �u

)T

, d = 2, 3.

Our aim is to derive a domain decomposition method which is robust with respect
to the viscosity ν. To our knowledge up to now this is an unsolved problem. Here
we just want to give a brief outline of how the Smith factorization can be used in
order to derive a new domain decomposition method for the Oseen equations. For
the details we refer to [5]. We only consider the two-dimensional case. Applying
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the Smith factorization to the Fourier transform of O2 (in y direction) yields Ô2 =
ÊO

2 D̂O
2 F̂O

2 . The diagonal matrix is given by the Fourier transform of

DO
2 =

⎛⎝ 1 0 0
0 1 0
0 0 LO

2 ∆

⎞⎠
with the second order differential operator LO

2 u = −ν∆u +�b · ∇u + cu. Similarly
to the Stokes case, we exhibit an iterative algorithm for the scalar fourth order
problem given by the differential operator LO

2 ∆, which converges in at most two
steps in the case of Ω = R

2 and Ω1 = R
+ × R and Ω2 = R

− × R. Our algorithm is
given as follows:

Algorithm 4.1. We choose the initial values φ0
1, φ0

2 such that

LO
2 φ0

1 = LO
2 φ0

2, φ0
1 = φ0

2 on Γ = ∂Ω1 ∩ ∂Ω2.

Then, we obtain (φn+1
i )i=1,2 from (φn

i )i=1,2 by the following procedure.

Correction step. We compute the corrections (φ̃n+1
i )i=1,2 as solutions of

(4.2)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

LO
2 ∆φ̃n+1

i = 0 in Ωi,

lim
|�x|→∞

φ̃n+1
i = 0,

∂(LO
2 φ̃n+1

i )
∂�ni

= −1
2

(
∂(LO

2 φn
1 )

∂�n1
+

∂(LO
2 φn

2 )
∂�n2

)
on Γ,(

ν
∂

∂�ni
− 1

2
�b · �ni

)
φ̃n+1

i = −1
2
ν

(
∂φn

1

∂�n1
+

∂φn
2

∂�n2

)
on Γ.

Updating step. We update (φn+1
i )i=1,2 by solving the local problems:

(4.3)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

LO
2 ∆φn+1

i = g in Ωi,
lim

|�x|→∞
φn+1

i = 0,

LO
2 φn+1

i = LO
2 φn

i +
1
2

(
LO

2 φ̃n+1
i + LO

2 φ̃n+1
2

)
on Γ,

φn+1
i = φn

i +
1
2
(φ̃n+1

1 + φ̃n+1
2 ) on Γ.

Using the same technique as for the Stokes equations, we could derive the fol-
lowing algorithm, which converges in two steps for our model problem given by
Ω = R

2, Ω1 = R
− × R and Ω2 = R

+ × R. In order to write it in a more compact
form we define the following quantity (which is very similar to the stress tensor)

�κi := �κi(�u, p) := ν
∂�u

∂�ni
− p�ni.

As before, the normal (resp. tangential) component of the velocity on the interface
is u�ni

= �u · �ni (resp. �u�τi
= (I − �ni ⊗ �ni) �u) and we denote by κi

�ni
:= κi(�ui, pi) · �ni

and �κi
�τi

:= (I − �ni ⊗ �ni)�κi, the normal and tangential parts of �κi, respectively.
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Algorithm 4.2. Starting with an initial guess satisfying �u0
i,�τi

= �u0
j,�τj

and κi
�ni

= κj
�nj

on Γij, the correction step is expressed as follows for 1 ≤ i ≤ N :
(4.4)⎧⎪⎪⎪⎨⎪⎪⎪⎩

O2(�̃un+1
i , p̃n+1

i ) = 0 in Ωi,

�κi
�τi

(�̃un+1
i , p̃n+1

i ) − 1
2
(�b · �ni)�̃un+1

i,�τi
= −1

2
(�κi

�τi
(�un

i , pn
i ) + �κj

�τj
(�un

j , pn
j )) on Γij ,

(−ν∂�τi�τi
+ (�b · �τi)∂�τi

+ c)ũn+1
i,�ni

+
1
2
(�b · �ni)∂�ni

ũn+1
i,�ni

= γn
ij on Γij

with γn
ij := −1

2
(−ν∂�τi�τi

+ (�b · �τi)∂�τi
+ c +

1
2
(�b · �ni)∂�ni

)
(
un

i,�ni
+ un

j,�nj

)
.

The updating step is given by

(4.5)

⎧⎪⎨⎪⎩
O2(�un+1

i , pn+1
i ) = �f in Ωi,

�un+1
i,�τi

= �un
i,�τi

+
1
2
(�̃un+1

i,�τi
+ �̃un+1

j,�τj
) on Γij ,

κi
�ni

(�un+1
i , pn+1

i ) = κi
�ni

(�un
i , pn

i ) + δn+1 on Γij

with δn+1 =
1
2
(κi

�ni
(�̃un+1

i , p̃n+1
i ) + κj

�nj
(�̃un+1

j , p̃n+1
j )).

This algorithm is more complicated than the one for the Stokes equations; but we
would like to emphasize, that all interface conditions are intrinsic except the second
interface condition in the correction step. There, some tangential derivatives are
involved.

Remark 4.3. For �b · �ni = 0 the interface condition (4.4) can be further simplified.
Using the fact that the interface condition is a second order ordinary differential
equation in the tangential direction, it can be simply written as

(4.6) ũn+1
i,�ni

= −1
2
(un

i,�ni
+ un

j,�nj
) on Γij .

Thus, in the case�b = 0 we recover the intrinsic Algorithm 3.7 of the Stokes problem.

5. The three-dimensional case for the Stokes equations

As one can see, Algorithm 3.7 was derived using the structure of the two-
dimensional Stokes operator. Thus, it is not clear what happens in the three-
dimensional case. We will show that using the Smith factorization we also end up
with the intrinsic Algorithm 3.7.

5.1. Smith factorization. Performing a Fourier transform in y- and z-directions
for the three-dimensional Stokes operator S3 (with dual variables k and η), we
obtain

(5.1) Ŝ3 =

⎛⎜⎜⎝
L̂3 0 0 ∂x

0 L̂3 0 ik

0 0 L̂3 iη
∂x ik iη 0

⎞⎟⎟⎠
where L̂3 := ν(−∂xx + k2 + η2) + c is the Fourier transform of L3 := −ν∆ + c.

Applying the Smith Factorization yields

Ŝ3 = Ê3D̂3F̂3
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with matrices

D̂3 =

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 L̂3 0
0 0 0 (∂xx − k2 − η2)L̂3

⎞⎟⎟⎠ ,

Ê3 = T̂−1
3

⎛⎜⎜⎝
ikL̂3 ν∂xxx −νiη∂x −ν∂x

0 T̂3 0 0
0 iη(ν(k2 + η2) + c) −ν(k2 + η2) + c 0

ik∂x −∂xx iη 1

⎞⎟⎟⎠ ,

F̂3 =

⎛⎜⎜⎝
−ν(∂xx − η2) + c νik∂x νiη∂x ∂x

0 L̂3 0 ik
0 −iη ik 0
0 1 0 0

⎞⎟⎟⎠ .

T3 is the differential operator in the y and z direction with symbol ik(ν(k2+η2)+c).
We see analogously to the two-dimensional case that the Stokes operator S3 is

determined by the diagonal matrix D3. Therefore, it can be represented by the
fourth order differential operator L3∆ and the second order differential operator
L3.

5.2. The three-dimensional algorithm. Our starting point is the intrinsic Algo-
rithm 3.7. We check in this section that indeed, also in three dimensions, Algorithm
3.7 converges in only two steps in the case of the whole space R

3 divided into the
two half spaces.

Let us consider the domain Ω := R
3 divided into Ω1 := {(x, y, z) ∈ R

3 | x < 0}
and Ω2 := {(x, y, z) ∈ R

3 | x > 0}. The common interface is given by Γ :=
{(x, y, z) ∈ R

3 | x = 0}. For this special geometry the intrinsic Algorithm 3.7 can
be simplified. We write �u = (u, v, w) . We obtain the following algorithm:

Algorithm 5.1. We start with an initial guess ((�u0
i , p

0
i ))i=1,2 satisfying

�u0
1,�τ1

= �u0
2,�τ2

, σ1
�n1

(�u0
1, p

0
1) = σ2

�n2
(�u0

2, p
0
2) on Γ.

Compute the following correction step for ((�̃un+1
i , p̃n+1

i ))i=1,2:⎧⎪⎪⎪⎨⎪⎪⎪⎩
S3(�̃un+1

i , p̃n+1
i ) = 0 in Ωi,

�σi
�τi

(�̃un+1
i , p̃n+1

i ) = −1
2
(�σi

�τi
(�un

i , p̃n
i ) + �σj

�τj
(�un

j , p̃n
j )) on Γ,

ũn+1
i = −1

2
(
un

i − un
j

)
on Γ.

(5.2)

Then the updating step for ((�un+1
i , pn+1

i ))i=1,2 is given as follows:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
S3(�un+1

i , pn+1
i ) = �g in Ωi,

�un+1
i,�τi

= �un
i,�τi

+
1
2
(�̃ui,�τi

n+1
+ �̃uj,�τj

n+1
) on Γ,

σi
�ni

(un+1
i , pn+1

i ) = σi
�ni

(un
i , pn

i )

+
1
2

(
σi

�ni
(ũn+1

i , pn+1
i ) + σj

�nj
(ũn+1

j , pn+1
j )

)
on Γ.

Algorithm 5.1 yields two completely uncoupled domain decomposition methods
for scalar problems.
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Proposition 5.2. The decomposition is given by Ω := R
3, Ω1 := {(x, y, z) ∈

R
3 | x < 0} and Ω2 := {(x, y, z) ∈ R

3 | x > 0}. Assume that the velocity components
�un

i , �̃un
i and the pressure components pn

i , p̃n
i are given by Algorithm 5.1. Then the

variables

(5.3)

vn
i = (F3(�un

i , pn
i ))4 , ṽn

i =
(
F3(�̃un

i , p̃n
i )

)
4
,

γn
i := (F3(�un

i , pn
i ))3 = −∂zv

n
i + ∂ywn

i ,

γ̃n
i :=

(
F3(�̃un

i , p̃n
i )

)
3

= −∂z ṽ
n
i + ∂yw̃n

i

satisfy for i = 1, 2 the correction step⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∆L3ṽ
n+1
i = 0 in Ωi,

L3γ̃
n+1
i = 0 in Ωi,

ν
∂γ̃n+1

i

∂�ni
= −1

2
ν

(
∂γn

1

∂�n1
+

∂γn
2

∂�n2

)
on Γ,

∂(L3ṽ
n+1
i )

∂�ni
= −1

2

(
∂(L3v

n
i )

∂�n1
+

∂(L3v
n
2 )

∂�n2

)
on Γ,

ν
∂ṽn+1

i

∂�ni
= −1

2
ν

(
∂vn

1

∂�n1
+

∂vn
2

∂��n2

)
on Γ,

(5.4)

and the updating step (i = 1, 2)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∆L3v
n+1
i = (E−1

3 �g)4 in Ωi,
L3γ

n+1
i = (E−1

3 �g)3 in Ωi,

γn+1
i = γn

i +
1
2
(γ̃n+1

1 + γ̃n+1
2 ) on Γ,

L3v
n+1
i = L3v

n
i +

1
2

(
L3ṽ

n+1
1 + L3ṽ

n+1
2

)
on Γ,

vn+1
i = vn

i +
1
2
(ṽn+1

1 + ṽn+1
2 ) on Γ.

(5.5)

Note that the algorithm decouples completely into two algorithms. One is defined
for vn

i and ṽn
i . The other one is defined for γn

i and γ̃n
i .

Proof. We only give the proof for Ω1. The proof of the iterations in Ω2 is similar.
We start with the updating step. The last interface condition of (5.5) is a direct
consequence of (5.3). We consider now the second interface condition of (5.3). Using
the incompressibility constraint (∂xun+1

i = −∂yvn+1
i − ∂zw

n+1
i , i = 1, 2) yields

− ν
∂

∂y
vn+1
1 − ν

∂

∂z
wn+1

1 − pn+1
1 = −ν

∂

∂y
vn
1 − ν

∂

∂z
wn

1 − pn
1

+
1
2

(
−ν

∂

∂y
ṽn+1
1 − ν

∂

∂z
w̃n+1

1 − p̃n+1
1

)
− 1

2

(
ν

∂

∂y
ṽn+1
2 + ν

∂

∂z
w̃n+1

2 + p̃n+1
2

)
.

(5.6)

Differentiating the first component of the first interface condition of (5.3) with
respect to y and the second component with respect to z, multiplying with ν and
adding to (5.6) yield

pn+1
1 = pn

1 +
1
2

(
p̃n+1
1 − p̃n+1

2

)
.
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Now we differentiate with respect to y and use the Stokes equations. We obtain
exactly the second interface condition of (5.5):

L3v
n+1
1 = L3v

n
1 +

1
2

(
L3ṽ

n+1
1 + L3ṽ

n+1
2

)
.

In order to derive the first interface condition of (5.5), we differentiate the second
component of the first interface condition of (5.3) with respect to y and the first
component with respect to z. Subtracting both equations yields

−∂zv
n+1
1 +∂ywn+1

1 = −∂zv
n
1 −

1
2

(
∂z ṽ

n+1
1 + ∂z ṽ

n+1
2

)
+∂ywn

1 +
1
2

(
∂yw̃n+1

1 + ∂yw̃n+1
2

)
on Γ or, using the definitions for γn

i , γ̃n
i in (5.3),

γn+1
i = γn

i +
1
2
(γ̃n+1

1 + γ̃n+1
2 ) on Γ,

which is exactly the first interface condition of (5.5).

Next, we will prove the equivalence of the correction step for the two algorithms.
By differentiating the second component of the first interface condition of (5.2) with
respect to y we obtain

ν∂xyw̃n+1
1 = −1

2
ν(∂xywn

1 − ∂xywn
2 ) on Γ.

Differentiating the first component of the first equation of (5.2) with respect to z
and subtracting it from the previous equation we get

ν∂xyw̃n+1
1 − ν∂xz ṽ

n+1
1 = −ν

1
2
(∂xywn

1 − ∂xywn
2 ) + ν

1
2
(∂xzv

n
1 − ∂xzv

n
2 ).

Using the definition (5.3) of γn
i and γ̃n

i we obtain the first interface condition of
(5.4).

Finally, we have to derive the second interface condition of (5.4). We start with
the first interface condition of (5.2). Differentiating the second boundary condition
of (5.2) w.r.t. y and z, multiplying by ν and adding the results to the first interface
condition of (5.2), we get

ν
∂�̃ui,�τi

n+1

∂�ni
= −1

2

(
ν

∂�un
i,�τi

∂�ni
+ ν

∂�un
j,�τj

∂�nj

)
on Γ.

Differentiating the first component with respect to y and the second one with
respect to z we obtain

ν∂xy ṽn+1
1 + ν∂xzw̃

n+1
1 = −1

2
ν (∂xy(vn

1 − vn
2 )) − 1

2
ν (∂xz(wn

1 − wn
2 )) .

Next we insert the incompressibility condition:

(5.7) −ν∂xxũn+1
1 =

1
2
ν∂xx(un

1 − un
2 ).

Differentiating the second interface condition of (5.2) in tangential directions yields

(−ν∂yy − ν∂zz + c)ũn+1
1 = −1

2
(−ν∂yy − ν∂zz + c)(un

1 − un
2 ).

Now we add equation (5.7). We get

L3ũ
n+1
1 = −1

2
(L3u

n
1 − L3u

n
2 ).
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Figure 1. (a) Staggered grid, (b) a cell K corresponding to the
first velocity component u.

We use the Stokes equations and differentiate with respect to y:

∂y(∂xp̃n+1
1 ) = −1

2
(∂y(∂xpn

1 ) − ∂y(∂xpn
2 )) .

Applying again the Stokes equations, we end up with the second interface condition
of (5.4):

∂xL3ṽ
n+1
1 = −1

2
ν(∂xL3v

n
1 − ∂xL3v

n
2 ).

Thus, everything is shown. �

Remark 5.3. The algorithm decouples into two scalar problems. Since one knows
that each of these scalar algorithms converges in at most two steps, we obtain
convergence in two steps for the three-dimensional case, too.

Remark 5.4. The new algorithm for the Stokes system is reminiscent of the hybrid
approach presented in [10]. Indeed, in both cases, the interface conditions are mixed
Dirichlet and Neumann type boundary conditions. But, our approach is different
in two ways:

• It shows what is the good combination of stress and displacement for the
interface conditions in both 2D and 3D.

• In the non-symmetric case, the complex interface condition (4.4) is not of
the hybrid type as defined in [10].

6. Discretization

For the discretization of the two-dimensional case we choose a second order
centered Finite Volume approach with a staggered grid (cf. [21]). In our numerical
experiments we only consider the case, where the domain Ω is given by rectangles
using regular grids. In Figure 1(a) a standard staggered grid for velocity (u, v)
and pressure p is plotted. Each equation of the Stokes system is discretized by
different control cells. In Figure 1(b) you see a typical interior control cell for the
first equation. Let us study the discretization in more detail. We consider the
first equation of the Stokes system for (u, v, p) and integrate it over a cell Kij with
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(a) (b) (c)

Figure 2. Boundary cells for u: (a) horizontal boundary cell, (b)
vertical boundary cell, (c) corner cell.

center xi,j (position of ui,j). Using integration by parts we obtain∫
Kij

f1dx =
∫

Kij

(−ν∆u + cu + ∂xp) dx

=
∫

∂Kij

(
−ν∂�nKij

u + pnij,1

)
ds +

∫
Kij

cudx

where nij,k is the k-th component of the outward normal �nij of Kij . Now this
equation is discretized. We replace the derivatives of u by corresponding central
differences and approximate the remaining integrals by the midpoint rule. For the
pressure we assume that it is constant along the edges. We denote the length of an
interior cell Kij in x-direction by ∆x and the length in y-direction by ∆y.

For an interior cell Kij we obtain the following equation:

∆x∆y f(xi,j) = ∆x∆y cui,j + ∆y(−pi,j−1/2 + pi,j+1/2)

+
∆y

∆x
ν(2ui,j − ui,j+1 − ui,j−1)

+
∆x

∆y
ν(2ui,j − ui−1,j − ui+1,j).

(6.1)

The different cells at the boundary are plotted in Figure 2. One has to distinguish
between cells connected to horizontal boundaries or vertical boundaries and corner
cells. Let us start with the cells that are connected to the horizontal boundaries. In
the new domain decomposition method there are interface conditions for the normal
stress. Since the normal stress on a boundary edge cannot be computed directly,
we have to introduce an artificial value ũi,j . Then, the stress on the horizontal
boundary can be approximated by ν

ũi,j−ui,j

∆y/2 . Therefore, we obtain for the cell in
Figure 2(a) the following modification of equation (6.1):

∆x∆yf(xi,j) = ∆x∆y cui,j + ∆y(−pi,j−1/2 + pi,j+1/2)

+
∆y

∆x
ν(2ui,j − ui,j+1 − ui,j−1) +

∆x

∆y
ν(ui,j − ui+1,j) +

∆x

∆y/2
ν(ui,j − ũi,j).
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Figure 3. (a) Interior cell for the second velocity component v,
(b) cell for the pressure p.

Next we consider a vertical boundary cell. Now, the cell Kij is given by a half cell;
cf. Figure 2(b). We introduce on the boundary an artificial unknown σi,j for the
normal stress. Then the discretization is given by

∆x

2
∆yf(xi,j) =

∆x

2
∆y cui,j + ∆y pi,j+1/2

+
∆y

∆x
ν(ui,j − ui,j+1) + ∆y σi,j +

∆x/2
∆y

ν(2ui,j − ui−1,j − ui+1,j).

The corner cells are the combination of horizontal and vertical cells; cf. Figure 2 (c):

∆x

2
∆yf(xi,j) =

∆x

2
∆y cui,j + ∆y pi,j+1/2

+
∆y

∆x
ν(ui,j − ui,j+1) + ∆y σi,j +

∆x/2
∆y

ν(ui,j − ui−1,j) +
∆x/2
∆y/2

ν(ui,j − ũi,j).

Thus, for each cell of u we obtain one equation.
For the equation of the second velocity component v we proceed in a similar

manner. The center of the cells for v are always given by the second velocity
component. In Figure 3(a) an interior cell is plotted and in Figure 4 you can see,
how the boundary cells can be treated.

The third equation is discretized with the help of the pressure nodes. Considering
the cells centered by the pressure nodes, we observe that all cells can be handled
in the same way; cf. Figure 3(b). Integrating over an arbitrary cell Kij yields

0 =
∫

∂Kij

unij,1 + vnij,2ds,

where nij,k is the k-th component of the outward normal �nij of Kij . Thus, the
discretization is given by

0 = ∆y(−ui,j−1/2 + ui,j+1/2) + ∆x(−vi−1/2,j + vi+1/2,j).

Remark 6.1. In the correction step the pressure is only determined up to a constant.
In order to avoid singular problems, we regularize the pressure equation by

0 = ∆y(−ui,j−1/2 + ui,j+1/2) + ∆x(−vi−1/2,j + vi+1/2,j) + εpi,j

using a small value ε > 0. In the numerical experiments we have chosen ε = 10−3.
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(a) (b) (c)

Figure 4. Boundary cells for v: (a) horizontal boundary cell, (b)
vertical boundary cell, (c) corner cell.

Figure 5. A 2 × 2 decomposition with pressure cells.

Finally, we discuss, how boundary conditions are imposed. Again, we restrict
ourselves to the case of the first velocity component u. The boundary conditions
for v are imposed analogously. On vertical boundaries Dirichlet conditions, re-
spectively, Neumann conditions are imposed by simply setting the nodes for u,
respectively, cσi,j on the interface. For horizontal boundaries Dirichlet conditions
are imposed by setting the artificial values ũi,j . A Neumann condition ν∂�nu = g is
discretized by setting

(6.2) g(xi,j) = ν
∂u

∂�n
(xi,j) ≈ ν

ũi,j − ui,j

∆y/2

for all nodes xi,j corresponding to the artificial unknowns ũi,j (cf. Figure 2(b)).

For the domain decomposition we split the global rectangle Ω into local rectangles
Ωi in such a way that we retrieve local subdomains with the above pattern. This
means that the subdomains consist of the union of cells of the pressure nodes. In
Figure 5 an example for a 2 × 2 decomposition is shown. For the implementation
of the domain decomposition algorithm a discretization of the interface conditions
is needed. Fortunately, all interface conditions are of Dirichlet- or Neumann-type.
For the sake of simplicity only the case of vertical interfaces is described. For
horizontal interfaces the role of the first and the second velocity component has to
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be switched. Thus, in the correction step (3.14) a Dirichlet condition

(6.3) ũn+1
i = −1

2
(un

i − un
j )

for the first velocity component u and a Neumann condition

(6.4) σi
�τi

(�̃un+1
i , p̃n+1

i ) = −1
2
(σi

�τi
(�̃un

i , pn
i ) + σj

�τj
(�un

j , p̃n
j ))

for the second component v has to be imposed in subdomain Ωi. Neumann con-
ditions can be imposed following the line of (6.2), where normal derivatives of the
right hand side of (6.4) can be computed by finite differences. For the Dirichlet
conditions we just set the values on the interface to the corresponding value using
the interface Dirichlet data of adjacent subdomains.

In the update step (3.15) we have a Neumann condition for the first velocity
component and a Dirichlet condition for the second component. Imposing the
Neumann condition for the first component is simple. One just sets the artificial
stress σi,j on the interface to the given value using the artificial stresses on the
interface of the correction step. For the Dirichlet condition the artificial unknowns
of the second velocity component on the interface are used.

We consider two different types of domain decomposition methods. First, we
apply directly the discrete version of Algorithm 3.7. In the second version we
have accelerated the algorithm using a Krylov method. Due to the non-symmetric
structure of the boundary conditions we apply the GMRES method [25].

7. Numerical results

In this section we will analyze the performance of the new algorithm. It will
be compared with the standard Schur complement approach using a Neumann-
Neumann preconditioner (without coarse space); cf. [26]. We will extend the
preliminary results of [4], where we made some numerical experiments for the two
subdomains case, using standard inf-sup stable P2/P1-Taylor-Hood elements on
triangles.

We consider the domain Ω = [0.2, 1.2] × [0.1, 1.1] decomposed into two or more
subdomains of equal or different sizes. We choose the right hand side �f such
that the exact solution is given by u(x, y) = sin(πx)3 sin(πy)2 cos(πy), v(x, y) =
− sin(πx)2 sin(πy)3 cos(πx) and p(x, y) = x2 + y2. The viscosity ν is always 1. We
solve the problem for various values of the reaction coefficient c, which can arise for
example, when one applies an implicit time discretization of the unsteady Stokes
problem (c = 1/∆t).

First, the interface system is solved by a purely iterative method (denoted re-
spectively by itNew and itNN for the new algorithm and the Neumann-Neumann
preconditioner) and then accelerated by GMRES (denoted respectively by acNew

and acNN for the new algorithm and the Neumann-Neumann preconditioner). In
all tables we count the number of iterations needed to reduce the L∞ norm of the
error by the factor TOL = 10−6:

max
i=1,...,N

‖ui
k − uh‖L∞(Ωi) ≤ 10−6,

where ui
k is the discrete solution of iteration step k in subdomain Ωi and uh is the

global discrete solution computed by a direct solver applied to the global problem.
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Table 1. Two subdomains case: (a) Influence of the reaction pa-
rameter on the convergence (h = 1/96). (b) Influence of the mesh
size for c = 10−5.

c itNew itNN acNew acNN

102 2 15 1 6
100 2 15 1 6
10−3 2 15 1 6
10−5 2 15 1 6

h itNew itNN acNew acNN

1/24 2 14 1 6
1/48 2 15 1 6
1/96 2 15 1 6

Table 2. Two subdomains case: Influence of the length of the
first domain: (a) c = 10−5, h = 1/100, (b) c = 1.0, h = 1/100.

L1/L itNew itNN acNew acNN

0.1 - - 7 8
0.2 22 22 5 7
0.3 5 16 3 6
0.4 5 15 3 6
0.5 2 15 1 6

L1/L itNew itNN acNew acNN

0.1 - - 7 8
0.2 15 18 5 7
0.3 5 16 3 6
0.4 5 15 3 7
0.5 2 15 1 6

Since the interface problem is ill-conditioned especially in the presence of cross-
points, the reduction of the Euclidean norm of the residual is not a good indicator for
the convergence of the algorithm. The case where the algorithm does not converge
within 100 steps is denoted by −.

7.1. Two subdomains case. We first consider a decomposition into two subdo-
mains of same width and study the influence of the reaction parameter and of the
mesh size on the convergence. We can see in Table 1(a) that the convergence of
the new algorithm is optimal. For the iterative version convergence is reached in
two iterations. Since in this case the preconditioned operator for the corresponding
Krylov method reduces in theory to the identity, the Krylov method converges in
one step. This is also valid numerically. Moreover, both algorithms are completely
insensitive with respect to the reaction parameter. The advantage in comparison
to the Neumann-Neumann algorithm is obvious.

In Table 1(b) we fix the reaction parameter c = 10−5 and vary the mesh size.
The conclusions are similar: both algorithms converge independently of the mesh
size and, again, we observe a clearly better convergence behavior of the new algo-
rithm. The same kind of results are valid for different values of c (not presented
here).

Next, we consider a decomposition into two subdomains where the first subdo-
main is thinner than the second one. We study the influence of the ratio between
the length L1 of the first subdomain and the global domain L for three values of c
(see Tables 2, 3).

We observe that the iterative counterparts of the algorithms are very sensitive to
the size of the first subdomain (it might not even converge when the parameter c is
very small), but as expected not the accelerated one. Second, when the parameter
c is sufficiently large (which corresponds to small time steps when using a time
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Table 3. Influence of the length of the first subdomain (c = 102,
h = 1/100).

L1/L itNew itNN acNew acNN

0.1 16 40 5 7
0.2 7 16 3 6
0.3 5 15 3 6
0.4 4 16 2 7
0.5 2 15 1 6

Table 4. Influence of the number of subdomains for h = 1/96;
c = 10−5 (left), c = 1 (right).

N itNew itNN acNew acNN

2 2 15 1 6
4 - - 8 -
6 - - 15 -
8 - - 21 -

N itNew itNN acNew acNN

2 2 15 1 6
4 - - 7 13
6 - - 12 25
8 - - 17 31

Table 5. Influence of the number of subdomains (c = 102, h = 1/96).

N itNew itNN acNew acNN

2 2 15 1 6
4 34 - 5 9
6 - - 7 15
8 - - 10 21

discretization scheme), or of order 1, we have only small variations of iteration
numbers in the case of thinner subdomains.

7.2. Multi-domain case. Now we analyze the case of a decomposition into more
than two subdomains. Two cases are considered: strip-wise decompositions (with
subdomains of the same size or with a variable length, see Tables 4, 6) and more
general decompositions with cross points.

7.2.1. Strip-wise decomposition. First of all we fix the mesh size h = 1/96 and for
different values of c we vary the number of subdomains. In the case of a strip-wise
decomposition into N subdomains, due to the ill-conditioning of the Neumann-
Neumann preconditioner this algorithm does not reach the given tolerance of 10−6.
A suitable coarse space will cure this. These results show clearly that the new
algorithm is more robust w.r.t. the absence of a coarse space. For large c (cf. Table
5) the behavior of the two domains case is conserved. Using the new algorithm, the
number of iteration steps is almost reduced by a factor of two.

Next, we consider a 4 × 1 strip-wise decomposition into subdomains of variable
length (here [m1, m2, m3, m4] denotes the number of discretization points in x-
direction per subdomain). Again, we can conclude, that the new algorithm shows
clearly better results.



A NEW DOMAIN DECOMPOSITION METHOD FOR THE STOKES EQUATIONS 811

Table 6. Influence of the size of subdomains (h = 1/96).

c N itNew itNN acNew acNN

10−5 [16, 32, 16, 32] - - 9 -
[16, 48, 16, 16] - - 10 -
[48, 16, 16, 16] - - 12 -

100 [16, 32, 16, 32] - - 8 14
[16, 48, 16, 16] - - 10 13
[48, 16, 16, 16] - - 12 17

102 [16, 32, 16, 32] 74 - 5 12
[16, 48, 16, 16] - - 6 11
[48, 16, 16, 16] - - 6 14

Table 7. Influence of the number of subdomains: h = 1/96.

c N × N itNew itNN acNew acNN

10−5 2x2 - - 9 13
3x3 - - 28 -
4x4 - - 40 -

100 2x2 - - 9 13
3x3 - - 30 28
4x4 - - 39 39

102 2x2 61 - 7 11
3x3 - - 22 21
4x4 - - 27 27

7.2.2. General decomposition. The final test cases treat general decompositions into
N × N subdomains. Two values for the reaction coefficient c are analyzed.

Figure 6. Singular values of the preconditioned interface operator
for a 4 × 4 decomposition (left), 5 × 5 decomposition (right).

As seen in Tables 4, 6, 7, contrarily to the new algorithm, the Neumann-Neumann
algorithm fails to converge when c is small. Actually, the residual of the GMRES
iterates decreases but not the error in L∞-norm with respect to the solution com-
puted by a direct method. This is due to the fact that for small c the precondi-
tioned problem is ill-conditioned. In Figure 6 we plot the largest 50 singular values
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Table 8. Number of singular values which are larger than 10 for
a N × N decomposition.

N × N NN New
2x2 4 0
3x3 9 1
4x4 20 4
5x5 36 9
6x6 54 16
7x7 76 25
8x8 102 36
9x9 135 49

10x10 167 64

of the singular value decomposition (SVD) of the upper Hessenberg matrix H com-
puted by the first 200 GMRES iterations for both methods. We see that for the
Neumann-Neumann algorithm the largest eigenvalues are much higher than for the
new algorithm. A possible cure is adding a suitable coarse space whose size is at
least equal to the number of largest SVD eigenvalues. We see in Table 8 that the
coarse space for the Neumann-Neumann algorithm must be much larger. For the
new algorithm one degree of freedom for each inner sudomain seems to be sufficient.

8. Conclusion

In this paper we have shown that the Smith factorization is a powerful tool
in order to derive new domain decomposition methods for vector valued partial
differential equations. Compared to the classical algorithm, the new algorithm is
much more robust w.r.t. small reaction terms which correspond to using a large
time step in an implicit scheme for the unsteady Stokes equations. Of course, the
convergence of both methods is not completely satisfactory in the multi-domain case
with cross points. But the number of needed iteration steps can be dramatically
decreased by using an appropriate coarse space. A suitable choice of a coarse space
for our new approach is a subject of further research. An experimental convergence
analysis shows that the size of the coarse space for the new algorithm will be much
smaller than the one needed by the classical algorithm; see also [10].

Moreover, we outlined, how this approach can be used in order to derive a domain
decomposition method for the Oseen equations. We expect that the proposed
algorithm will be robust with respect to the viscosity ν. To our knowledge this
would be the first one showing this behavior. The power of the Smith factorization
can also be seen from the fact that one of the authors used it in order to design
perfectly matched layers (PML) for the compressible Euler equations (cf. [17]).
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