Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Classification of ternary extremal self-dual codes of length 28


Authors: Masaaki Harada, Akihiro Munemasa and Boris Venkov
Journal: Math. Comp. 78 (2009), 1787-1796
MSC (2000): Primary 94B05; Secondary 11H71
DOI: https://doi.org/10.1090/S0025-5718-08-02194-7
Published electronically: October 24, 2008
MathSciNet review: 2501075
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: All $ 28$-dimensional unimodular lattices with minimum norm $ 3$ are known. Using this classification, we give a classification of ternary extremal self-dual codes of length $ 28$. Up to equivalence, there are 6,931 such codes.


References [Enhancements On Off] (What's this?)

  • 1. R. Bacher and B. Venkov, Lattices and association schemes: a unimodular example without roots in dimension $ 28$, Ann. Inst. Fourier (Grenoble) 45 (1995), 1163-1176. MR 1370742 (96j:11093)
  • 2. R. Bacher and B. Venkov, Réseaux entiers unimodulaires sans racines en dimensions 27 et 28, Réseaux euclidiens, designs sphériques et formes modulaires, 212-267, Monogr. Enseign. Math., 37, Enseignement Math., Geneva, 2001. MR 1878751 (2003a:11082)
  • 3. C. Bachoc, T.A. Gulliver and M. Harada, Isodual codes over $ \mathbb{Z}_{2k}$ and isodual lattices, J. Algebraic Combin. 12 (2000), 223-240. MR 1803233 (2001j:94052)
  • 4. W. Bosma and J. Cannon, Handbook of Magma Functions, Department of Mathematics, University of Sydney, Available online at http://magma.maths.usyd.edu.au/magma/.
  • 5. J.H. Conway, V. Pless and N.J.A. Sloane, Self-dual codes over $ {\rm GF}(3)$ and $ {\rm GF}(4)$ of length not exceeding $ 16$, IEEE Trans. Inform. Theory 25 (1979), 312-322. MR 528009 (80h:94026)
  • 6. J.H. Conway and N.J.A. Sloane, Sphere Packing, Lattices and Groups (3rd ed.), Springer-Verlag, New York, 1999. MR 1662447 (2000b:11077)
  • 7. U. Dempwolff, Translation planes of order $ 27$, Des. Codes Cryptogr. 4 (1994), 105-121. MR 1268564 (95a:51012)
  • 8. M. Harada, New extremal ternary self-dual codes, Australas. J. Combin. 17 (1998), 133-145. MR 1626295 (99c:94043)
  • 9. M. Harada, An extremal ternary self-dual $ [28,14,9]$ code with a trivial automorphism group, Discrete Math. 239 (2001), 121-125. MR 1850990 (2002m:94058)
  • 10. M. Harada, M. Kitazume and M. Ozeki, Ternary code construction of unimodular lattices and self-dual codes over $ \mathbb{Z}\sb 6$, J. Algebraic Combin. 16 (2002), 209-223. MR 1943589 (2004b:11099)
  • 11. M. Harada and A. Munemasa, Database of Self-Dual Codes, Available online at http://www.math.is.tohoku.ac.jp/~munemasa/ selfdualcodes.htm.
  • 12. M. Harada, M. Ozeki and K. Tanabe, On the covering radius of ternary extremal self-dual codes, Des. Codes Cryptogr. 33 (2004), 149-158. MR 2080361 (2005d:94214)
  • 13. W.C. Huffman, On extremal self-dual ternary codes of lengths $ 28$ to $ 40$, IEEE Trans. Inform. Theory 38 (1992), 1395-1400. MR 1168760 (93b:94030)
  • 14. W.C. Huffman, On the classification and enumeration of self-dual codes, Finite Fields Appl. 11 (2005), 451-490. MR 2158773 (2006h:94253)
  • 15. D.L. Kreher, ``$ t$-Designs, $ t \ge 3$,'' The CRC Handbook of Combinatorial Designs, C.J. Colbourn and J.H. Dinitz (Editors), CRC Press, Boca Raton, 1996, pp. 47-66. MR 1392993 (97a:05001)
  • 16. J.S. Leon, V. Pless and N.J.A. Sloane, On ternary self-dual codes of length $ 24$, IEEE Trans. Inform. Theory 27 (1981), 176-180. MR 633414 (83c:94020)
  • 17. C.L. Mallows, V. Pless and N.J.A. Sloane, Self-dual codes over $ GF(3)$, SIAM J. Appl. Math. 31 (1976), 649-666. MR 0441541 (55:14404)
  • 18. C.L. Mallows and N.J.A. Sloane, An upper bound for self-dual codes, Inform. Control 22 (1973), 188-200. MR 0414223 (54:2326)
  • 19. G. Nebe, Finite subgroups of $ {\rm GL}\sb n(\mathbf Q)$ for $ 25\leq n\leq 31$, Comm. Algebra 24 (1996), 2341-2397. MR 1390378 (97e:20066)
  • 20. V. Pless, N.J.A. Sloane and H.N. Ward, Ternary codes of minimum weight 6 and the classification of length 20, IEEE Trans. Inform. Theory 26 (1980), 305-316. MR 570014 (81b:94033)
  • 21. E. Rains and N.J.A. Sloane, ``Self-dual codes,'' Handbook of Coding Theory, V.S. Pless and W.C. Huffman (Editors), Elsevier, Amsterdam 1998, pp. 177-294. MR 1667939

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 94B05, 11H71

Retrieve articles in all journals with MSC (2000): 94B05, 11H71


Additional Information

Masaaki Harada
Affiliation: Department of Mathematical Sciences, Yamagata University, Yamagata 990–8560, Japan

Akihiro Munemasa
Affiliation: Graduate School of Information Sciences, Tohoku University, Sendai 980–8579, Japan

Boris Venkov
Affiliation: Steklov Institute of Mathematics at St. Petersburg, St. Petersburg 191011, Russia

DOI: https://doi.org/10.1090/S0025-5718-08-02194-7
Keywords: Extremal self-dual code, unimodular lattice, frame.
Received by editor(s): January 29, 2008
Received by editor(s) in revised form: June 9, 2008
Published electronically: October 24, 2008
Additional Notes: The work of the first and second authors was partially supported by the Sumitomo Foundation (Grant for Basic Science Research Projects, 050034).
Article copyright: © Copyright 2008 American Mathematical Society

American Mathematical Society