Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



A convergent finite element-finite volume scheme for the compressible Stokes problem. Part I: The isothermal case

Authors: T. Gallouët, R. Herbin and J.-C. Latché
Journal: Math. Comp. 78 (2009), 1333-1352
MSC (2000): Primary 35Q30, 65N12, 65N30, 76N15, 76M10, 76M12
Published electronically: January 30, 2009
MathSciNet review: 2501053
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we propose a discretization for the (nonlinearized) compressible Stokes problem with a linear equation of state $ \rho=p$, based on Crouzeix-Raviart elements. The approximation of the momentum balance is obtained by usual finite element techniques. Since the pressure is piecewise constant, the discrete mass balance takes the form of a finite volume scheme, in which we introduce an upwinding of the density, together with two additional stabilization terms. We prove a priori estimates for the discrete solution, which yields its existence by a topological degree argument, and then the convergence of the scheme to a solution of the continuous problem.

References [Enhancements On Off] (What's this?)

  • 1. Pavel Bochev, Sang Dong Kim, and Byeong-Chun Shin, Analysis and computation of least-squares methods for a compressible Stokes problem, Numer. Methods Partial Differential Equations 22 (2006), no. 4, 867–883. MR 2230276, 10.1002/num.20126
  • 2. F. Brezzi and J. Pitkäranta, On the stabilization of finite element approximations of the Stokes equations, Efficient solutions of elliptic systems (Kiel, 1984) Notes Numer. Fluid Mech., vol. 10, Friedr. Vieweg, Braunschweig, 1984, pp. 11–19. MR 804083
  • 3. P. G. Ciarlet, Handbook of numerical analysis volume II: Finite elements methods - Basic error estimates for elliptic problems, Handbook of Numerical Analysis, Volume II (P. Ciarlet and J.L. Lions, eds.), North Holland, 1991, pp. 17-351.
  • 4. M. Crouzeix and P.-A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge 7 (1973), no. R-3, 33–75. MR 0343661
  • 5. Alexandre Ern and Jean-Luc Guermond, Theory and practice of finite elements, Applied Mathematical Sciences, vol. 159, Springer-Verlag, New York, 2004. MR 2050138
  • 6. Robert Eymard, Thierry Gallouët, and Raphaèle Herbin, Finite volume methods, Handbook of numerical analysis, Vol. VII, Handb. Numer. Anal., VII, North-Holland, Amsterdam, 2000, pp. 713–1020. MR 1804748
  • 7. R. Eymard and R. Herbin, Entropy estimate for the approximation of the compressible barotropic Navier-Stokes equations using a collocated finite volume scheme, in preparation (2007).
  • 8. Robert Eymard, Raphaèle Herbin, and Jean Claude Latché, On a stabilized colocated finite volume scheme for the Stokes problem, M2AN Math. Model. Numer. Anal. 40 (2006), no. 3, 501–527. MR 2245319, 10.1051/m2an:2006024
  • 9. Eduard Feireisl, Dynamics of viscous compressible fluids, Oxford Lecture Series in Mathematics and its Applications, vol. 26, Oxford University Press, Oxford, 2004. MR 2040667
  • 10. Thierry Gallouët, Laura Gastaldo, Raphaele Herbin, and Jean-Claude Latché, An unconditionally stable pressure correction scheme for the compressible barotropic Navier-Stokes equations, M2AN Math. Model. Numer. Anal. 42 (2008), no. 2, 303–331. MR 2405150, 10.1051/m2an:2008005
  • 11. L. Gastaldo, R. Herbin, and J.-C. Latché, An entropy-preserving finite element-finite volume pressure correction scheme for the drift-flux model, submitted (2008).
  • 12. R. Bruce Kellogg and Biyue Liu, A finite element method for the compressible Stokes equations, SIAM J. Numer. Anal. 33 (1996), no. 2, 780–788. MR 1388498, 10.1137/0733039
  • 13. R. Bruce Kellogg and Biyue Liu, A penalized finite-element method for a compressible Stokes system, SIAM J. Numer. Anal. 34 (1997), no. 3, 1093–1105. MR 1451115, 10.1137/S0036142994273276
  • 14. Jae Ryong Kweon, An optimal order convergence for a weak formulation of the compressible Stokes system with inflow boundary condition, Numer. Math. 86 (2000), no. 2, 305–318. MR 1777491, 10.1007/PL00005408
  • 15. Jae Ryong Kweon, Optimal error estimate for a mixed finite element method for compressible Navier-Stokes system, Appl. Numer. Math. 45 (2003), no. 2-3, 275–292. MR 1967577, 10.1016/S0168-9274(02)00213-1
  • 16. Pierre-Louis Lions, Mathematical topics in fluid mechanics. Vol. 2, Oxford Lecture Series in Mathematics and its Applications, vol. 10, The Clarendon Press, Oxford University Press, New York, 1998. Compressible models; Oxford Science Publications. MR 1637634
  • 17. A. Novotný and I. Straškraba, Introduction to the mathematical theory of compressible flow, Oxford Lecture Series in Mathematics and its Applications, vol. 27, Oxford University Press, Oxford, 2004. MR 2084891
  • 18. L. E. Payne and H. F. Weinberger, An optimal Poincaré inequality for convex domains, Arch. Rational Mech. Anal. 5 (1960), 286–292 (1960). MR 0117419
  • 19. Roger Temam, Navier-Stokes equations. Theory and numerical analysis, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. Studies in Mathematics and its Applications, Vol. 2. MR 0609732
  • 20. Alberto Valli, On the existence of stationary solutions to compressible Navier-Stokes equations, Ann. Inst. H. Poincaré Anal. Non Linéaire 4 (1987), no. 1, 99–113 (English, with French summary). MR 877992
  • 21. Rüdiger Verfürth, Error estimates for some quasi-interpolation operators, M2AN Math. Model. Numer. Anal. 33 (1999), no. 4, 695–713 (English, with English and French summaries). MR 1726480, 10.1051/m2an:1999158

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 35Q30, 65N12, 65N30, 76N15, 76M10, 76M12

Retrieve articles in all journals with MSC (2000): 35Q30, 65N12, 65N30, 76N15, 76M10, 76M12

Additional Information

T. Gallouët
Affiliation: Université de Provence, France

R. Herbin
Affiliation: Université de Provence, France

J.-C. Latché
Affiliation: Institut de Radioprotection et de Sûreté Nucléaire (IRSN)

Keywords: Compressible Stokes equations, finite element methods, finite volume methods
Received by editor(s): December 7, 2007
Published electronically: January 30, 2009
Article copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.