Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

High precision computation of a constant in the theory of trigonometric series


Authors: J. Arias de Reyna and J. van de Lune
Journal: Math. Comp. 78 (2009), 2187-2191
MSC (2000): Primary 42-04, 26D05; Secondary 11Y60
DOI: https://doi.org/10.1090/S0025-5718-09-02222-4
Published electronically: February 9, 2009
MathSciNet review: 2521284
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Using the bisection as well as the Newton-Raphson method, we compute to high precision the Littlewood-Salem-Izumi constant frequently occurring in the theory of trigonometric sums.


References [Enhancements On Off] (What's this?)

  • 1. R. Askey, J. Steinig, Some positive trigonometric sums, Trans. Amer. Math. Soc. 187 (1974), 295-307. MR 0338481 (49:3245)
  • 2. R. Askey, Orthogonal Polynomials and Special Functions (CBMS-NSF Regional Conference Series in Applied Mathematics), Society for Industrial and Applied Mathematics, 1987. MR 0481145 (58:1288)
  • 3. R. Askey, Problems which interest and/or annoy me, J. Comput. Appl. Math. 48 (1993), 3-15. MR 1246848 (94j:33005)
  • 4. A. S. Belov, Coefficients of trigonometric cosine series with nonnegative partial sums (in Russian), Translated in Proc. Steklov Inst. Math. (1992) 1, 1-18. Theory of functions (in Russian) (Amberd, 1987). Trudy Mat. Inst. Steklov 190 (1989), 3-21. MR 1005335 (90m:42005)
  • 5. R. P. Boas Jr. and C. Klema, A constant in the theory of trigonometric series, Math. Comp. 18 (1964), 674. MR 0176283 (31:558)
  • 6. G. Brown, K. Wang, D. C. Wilson, Positivity of some basic cosine sums, Math. Proc. Cambridge Philos. Soc. 114 (1993), 383--391. MR 1235986 (94h:42013)
  • 7. G. Brown, F. Dai, K. Wang, On positive cosine sums, Math. Proc. Camb. Phil. Soc. 142 (2007), 219-232. MR 2314596 (2008e:42014)
  • 8. R. F. Church, On a constant in the theory of trigonometric series, Math. Comp. 19 (1965), 501.
  • 9. S. R. Finch, Mathematical Constants, Cambridge University Press, Cambridge, UK, 2003. MR 2003519 (2004i:00001)
  • 10. K. Grandjot, V. Jarnik, E. Landau, J. E. Littlewood, Bestimmung einer absoluten Konstanten aus der Theorie der trigonometrischen Reihen, Annali di Mat. (4) 6 (1929), 1-7. MR 1553122
  • 11. J. Keane, Estimating Brown-Wang $ B$ and Zygmund $ R$ constants, unpublished note (2000).
  • 12. S. Koumandos, S. Ruscheweyh, Positive Gegenbauer polynomial sums and applications to starlike functions, Constr. Approx. 23 (2006), 197-210. MR 2186305 (2007b:42001)
  • 13. S. Koumandos, S. Ruscheweyh, On a conjecture for trigonometric sums and starlike functions, J. Approx. Theory 149 (2007), 42-58. MR 2371613
  • 14. Y. L. Luke, W. Fair, G. Coombs and R. Moran, On a constant in the theory of trigonometric series, Math. Comp. 19 (1965), 501-502.
  • 15. A. Zygmund, Trigonometric Series, Cambridge University Press (1988) Vol I. MR 933759 (89c:42001)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 42-04, 26D05, 11Y60

Retrieve articles in all journals with MSC (2000): 42-04, 26D05, 11Y60


Additional Information

J. Arias de Reyna
Affiliation: Facultad de Matemáticas, Universidad de Sevilla, Apdo. 1160, 41080-Sevilla, Spain
Email: arias@us.es

J. van de Lune
Affiliation: Langebuorren 49, 9074 CH Hallum, The Netherlands (formerly at CWI, Amsterdam)
Email: j.vandelune@hccnet.nl

DOI: https://doi.org/10.1090/S0025-5718-09-02222-4
Keywords: Trigonometric sums, Littlewood-Salem-Izumi constant, High precision computation.
Received by editor(s): July 28, 2008
Received by editor(s) in revised form: September 21, 2008
Published electronically: February 9, 2009
Additional Notes: The first author was supported by MCI Grant MTM2006-05622.
Article copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society