Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Fourier expansions and integral representations for the Apostol-Bernoulli and Apostol-Euler polynomials


Author: Qiu-Ming Luo
Journal: Math. Comp. 78 (2009), 2193-2208
MSC (2000): Primary 11B68; Secondary 42A16, 11M35
DOI: https://doi.org/10.1090/S0025-5718-09-02230-3
Published electronically: June 12, 2009
MathSciNet review: 2521285
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We investigate Fourier expansions for the Apostol-Bernoulli and Apostol-Euler polynomials using the Lipschitz summation formula and obtain their integral representations. We give some explicit formulas at rational arguments for these polynomials in terms of the Hurwitz zeta function. We also derive the integral representations for the classical Bernoulli and Euler polynomials and related known results.


References [Enhancements On Off] (What's this?)

  • 1. M. Abramowitz, I. A. Stegun (Editors), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series 55, Fourth Printing, Washington, D.C., 1965. MR 757537 (85j:00005a)
  • 2. T. M. Apostol, On the Lerch zeta function, Pacific J. Math. 1 (1951), 161-167. MR 0043843 (13:328b)
  • 3. L. Carlitz, Multiplication formulas for products of Bernoulli and Euler polynomials, Pacific J. Math., 9 (1959), 661-666. MR 0108601 (21:7317)
  • 4. M. Cenkci, M. Can, Some results on $ q$-analogue of the Lerch zeta function, Adv. Stud. Contemp. Math., 12 (2006), 213-223. MR 2213080 (2007c:11098)
  • 5. J. Choi, P. J. Anderson, H. M. Srivastava, Some $ q$-extensions of the Apostol-Bernoulli and the Apostol-Euler polynomials of order $ n$, and the multiple Hurwitz zeta function, Appl. Math. Comput. (2007), 199 (2008), 723-737. MR 2420600
  • 6. D. Cvijović, J. Klinowski, New formulae for the Bernoulli and Euler polynomials at rational arguments, Proc. Amer. Math. Soc., 123 (1995), 1527-1535. MR 1283544 (95g:11085)
  • 7. D. Cvijović, The Haruki-Rassias and related integral representations of the Bernoulli and Euler polynomials, J. Math. Anal. Appl., 337 (2008), 169-173. MR 2356063 (2008i:33028)
  • 8. A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher Transcendental Functions, Volumes I-III, McGraw-Hill, New York, 1953-1955. MR 0698779 (84h:33001a); MR 0698780 (84h:330016); MR 0066496 (16:586c)
  • 9. M. Garg, K. Jain, H. M. Srivastava, Some relationships between the generalized Apostol-Bernoulli polynomials and Hurwitz-Lerch zeta functions, Integral Transforms Spec. Funct., 17 (2006), no. 11, 803-815. MR 2263956 (2007h:11028)
  • 10. H. Haruki, T. M. Rassias, New integral representations for Bernoulli and Euler polynomials, J. Math. Anal. Appl., 175 (1993), 81-90. MR 1216746 (94e:39016)
  • 11. D. H. Lehmer, A new approach to Bernoulli polynomials, American Math. Monthly, 95 (1988), 905-911. MR 979133 (90c:11014)
  • 12. R. Lipschitz, Untersuchung der Eigenschaften einer Gattung von unendlichen Reihen, J. Reine und Angew. Math. CV (1889), 127-156.
  • 13. Q.-M. Luo, H. M. Srivastava, Some generalizations of the Apostol-Bernoulli and Apostol-Euler polynomials, J. Math. Anal. Appl., 308 (2005), 290-302. MR 2142419 (2006e:33012)
  • 14. Q.-M. Luo, Apostol-Euler polynomials of higher order and Gaussian hypergeometric functions, Taiwanese J. Math. 10 (2006), 917-925. MR 2229631 (2007c:33005)
  • 15. Q.-M. Luo, H. M. Srivastava, Some relationships between the Apostol-Bernoulli and Apostol-Euler polynomials, Comput. Math. Appl., 51 (2006), 631-642. MR 2207447 (2006k:42050)
  • 16. Q.-M. Luo, An explicit relationship between the generalized Apostol-Bernoulli and Apostol-Euler polynomials associated with $ \lambda-$Stirling numbers of the second kind, Houston J. Math., accepted in press.
  • 17. Q.-M. Luo, The multiplication formulas for the Apostol-Bernoulli and Apostol-Euler polynomials of higher order, Integral Transforms Spec. Funct., accepted in press.
  • 18. W. Magnus, F. Oberhettinger, R. P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics, Third Enlarged Edition, Springer-Verlag, New York, 1966. MR 0232968 (38:1291)
  • 19. P. C. Pasles, W. A. Pribitkin, A generalization of the Lipschitz summation formula and some applications, Proc. Amer. Math. Soc., 129 (2001), 3177-3184. MR 1844990 (2002e:11059)
  • 20. H. M. Srivastava, Some formulas for the Bernoulli and Euler polynomials at rational arguments, Math. Proc. Cambridge Philos. Soc. 129 (2000), 77-84. MR 1757780 (2001f:11033)
  • 21. H. M. Srivastava, J. Choi, Series Associated with the Zeta and Related Functions, Kluwer Academic Publishers, Dordrecht, Boston and London, 2001. MR 1849375 (2003a:11107)
  • 22. W. Wang, C. Jia, T. Wang, Some results on Apostol-Bernoulli and Apostol-Euler polynomials, Comput. Math. Appl., 55 (2008), 1322-1332. MR 2394371

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 11B68, 42A16, 11M35

Retrieve articles in all journals with MSC (2000): 11B68, 42A16, 11M35


Additional Information

Qiu-Ming Luo
Affiliation: Department of Mathematics, East China Normal University, Shanghai 200241, People’s Republic of China –and– Department of Mathematics, Jiaozuo University, Henan Jiaozuo 454003, People’s Republic of China
Email: luomath@126.com, luomath2007@163.com

DOI: https://doi.org/10.1090/S0025-5718-09-02230-3
Keywords: Lipschitz summation formula, Fourier expansion, integral representation, Apostol-Bernoulli and Apostol-Euler polynomials and numbers, Bernoulli and Euler polynomials and numbers, Hurwitz Zeta function, Lerch's functional equation, rational arguments
Received by editor(s): June 3, 2008
Received by editor(s) in revised form: September 26, 2008
Published electronically: June 12, 2009
Additional Notes: The author expresses his sincere gratitude to the referee for valuable suggestions and comments. The author thanks Professor Chi-Wang Shu who helped with the submission of this manuscript to the Web submission system of the AMS.
The present investigation was supported in part by the PCSIRT Project of the Ministry of Education of China under Grant #IRT0621, Innovation Program of Shanghai Municipal Education Committee of China under Grant #08ZZ24 and Henan Innovation Project For University Prominent Research Talents of China under Grant #2007KYCX0021.
Article copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society