Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Algebraic solutions of Jacobi equations


Authors: S. C. Coutinho and Marcos da Silva Ferreira
Journal: Math. Comp. 78 (2009), 2427-2433
MSC (2000): Primary 34M15, 68W30; Secondary 13P10
DOI: https://doi.org/10.1090/S0025-5718-09-02238-8
Published electronically: May 1, 2009
MathSciNet review: 2521295
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We propose an algorithm to compute exactly the algebraic solutions of Jacobi equations over the projective plane.


References [Enhancements On Off] (What's this?)

  • 1. W. W. Adams and P. Loustaunau, An introduction to Gröbner bases, Grad. Stud. in Math., vol. 3, American Mathematical Society (1994). MR 1287608 (95g:13025)
  • 2. A. M. Cohen, Gröbner bases, an introduction, in Some Tapas of Computer Algebra, A. M. Cohen, H. Cuypers and H. Sterk (eds), Springer (1999). MR 1679917 (99k:00038)
  • 3. S. C. Coutinho, Indecomposable non-holonomic $ \mathscr D$-modules in dimension $ 2$, Proc. Edinb. Math. Soc. (2) 46 (2003), 341-355. MR 1998565 (2004k:16068)
  • 4. S. C. Coutinho and L. Menasché Schechter, Algebraic solutions of holomorphic foliations: An algorithmic approach, J. Symbolic Comput. 41 (2006), 603-618. MR 2209167 (2007b:32050)
  • 5. G. Darboux, Mémoire sur les équations différentielles algébriques du I $ ^{\mathrm{o}}$ ordre et du premier degré, Bull. des Sc. Math. (Mélanges) (1878), 60-96, 123-144, 151-200.
  • 6. G.-M. Greuel and G. Pfister, A Singular introduction to commutative algebra, Springer (2002). MR 1930604 (2003k:13001)
  • 7. G.-M. Greuel, G. Pfister, and H. Schönemann.
    SINGULAR 2.0.5. A Computer Algebra System for Polynomial Computations.
    Centre for Computer Algebra, University of Kaiserslautern (2001).
    http://www.singular.uni-kl.de.
  • 8. E. L. Ince, Ordinary Differential Equations, Dover (1944). MR 0010757 (6:65f)
  • 9. C. Jacobi, De Integratione Aequationes Differentiallis $ (A+A'x+A''y)(xdy-ydx)-(B+B'x+B''y)dy+(C+C'x+C''y)dx)=0$, J. für die reine und angewandte Mathematik (1842), pp. 1-4, and Ges. Werke, vol. 4, pp. 256-262.
  • 10. C. Jordan, Cours d'Analyse de l'École Polytechnique, t. III, 3e éd., Gauthier-Villars, (1915). MR 1188188
  • 11. J. P. Jouanolou, Equations de Pfaff algébriques, Lect. Notes in Math., 708, Springer-Verlag (1979). MR 537038 (81k:14008)
  • 12. H. Tsai and U. Walther, Computing homomorphisms between holonomic $ D$-modules. Effective methods in rings of differential operators, J. Symbolic Comput. 32 (2001), 597-617. MR 1866706 (2002k:16051)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 34M15, 68W30, 13P10

Retrieve articles in all journals with MSC (2000): 34M15, 68W30, 13P10


Additional Information

S. C. Coutinho
Affiliation: Departamento de Ciência da Computação, Instituto de Matemática, Universidade Federal do Rio de Janeiro, P.O. Box 68530, 21945-970 Rio de Janeiro, RJ, Brazil — and — Programa de Engenharia de Sistemas e Computação, COPPE, UFRJ, PO Box 68511, 21941-972, Rio de Janeiro, RJ, Brazil
Email: collier@impa.br

Marcos da Silva Ferreira
Affiliation: Departamento de Ciência da Computação, Instituto de Matemática, Universidade Federal do Rio de Janeiro, P.O. Box 68530, 21945-970 Rio de Janeiro, RJ, Brazil — and — Programa de Engenharia de Sistemas e Computação, COPPE, UFRJ, PO Box 68511, 21941-972, Rio de Janeiro, RJ, Brazil
Email: marcossferreira@gmail.com

DOI: https://doi.org/10.1090/S0025-5718-09-02238-8
Keywords: Jacobi equation, Gr\"obner bases, algebraic solutions
Received by editor(s): April 3, 2006
Received by editor(s) in revised form: April 23, 2008
Published electronically: May 1, 2009
Additional Notes: During the preparation of this paper the first author was partially supported by grants from CNPq and PRONEX(ALGA)
The second author was partially supported by a scholarship from CNPq
Article copyright: © Copyright 2009 American Mathematical Society

American Mathematical Society