Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

A new algorithm to search for small nonzero $ \vert x^3-y^2\vert$ values


Authors: I. Jiménez Calvo, J. Herranz and G. Sáez
Journal: Math. Comp. 78 (2009), 2435-2444
MSC (2000): Primary 11Y50, 65A05; Secondary 11D25, 14H52
DOI: https://doi.org/10.1090/S0025-5718-09-02240-6
Published electronically: February 13, 2009
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In relation to Hall's conjecture, a new algorithm is presented to search for small nonzero $ k=\lvert x^3-y^2\rvert$ values. Seventeen new values of $ k<x^{1/2}$ are reported.


References [Enhancements On Off] (What's this?)

  • 1. A. Baker, Contributions to the theory of Diophantine equations. I. On the representation of integers by binary forms. II. The Diophantine equation $ y^2 = x^3 + k$. Philos. Trans. Roy. Soc. London, Ser. A 263, (1967-1968), 173-191 and 193-208. MR 0228424 (37:4005); MR0228425 (37:4006)
  • 2. B.J. Birch, S. Chowla, M. Hall and A. Schinzel, On the difference $ x^3-y^2$. Norske Vid. Selsk. Forh. 38 (1965), 65-69. MR 0186620 (32:4079)
  • 3. L.V. Danilov, The Diophantine equation $ x^3 - y^2 = k$ and Hall's conjecture. Math. Notes Acad. Sci. USSR 32 (1982), 617-618. MR 677595 (84c:10014)
  • 4. H. Davenport, The diophantine equation $ y^2 - k = x^3$. Norske Vid. Selsk. Forh. 38 (1965), 86-87.
  • 5. N.D. Elkies, Rational points near curves and small nonzero $ \vert x^3 - y^2\vert$ via lattice reduction. Pages 33-63 in Algorithmic Number Theory (Proceedings of ANTS-IV;W. Bosma, ed.; Berlin: Springer, 2000; Lecture Notes in Comput. Sci. 1838). MR 1850598 (2002g:11035)
  • 6. J. Gebel, A. Pethö and H. G. Zimmer, On Mordell's equation. Compositio Math. 110 (1998), 335-367. MR 1602064 (98m:11049)
  • 7. M. Hall, The Diophantine equation $ x^3-y^2=k$. Computers in Number Theory (A. Atkin, B. Birch, eds.; Academic Press, 1971), pp. 173-198. MR 0323705 (48:2061)
  • 8. D. E. Knuth and L. Trabb Pardo, Analysis of a simple factorization algorithm. Theoretical Computer Sci. 3 (1976) pp. 321-348. MR 0498355 (58:16485)
  • 9. S. Lang, Conjectured Diophantine estimates on elliptic curves. Arithmetic and Geometry, Volume dedicated to Shafarevich, Vol I, edited by M. Artin and J. Tate, Birkhäuser, 1983, pp. 155-171. MR 717593 (85d:11024)
  • 10. S. Mohit and M. R. Murty, Wieferich primes and Hall's conjecture, Comptes Rendus de l'Acad. Sciences (Canada) 20 (1998), 29-32. MR 1618973 (98m:11004)
  • 11. J. Oesterlé, Nouvelles approaches du ``théorème'' de Fermat. Sém. Bourbaki 1987/88, Exposé No. 694, 165-186, 1989. MR 0992208 (90g:11038)
  • 12. C. Padró and G. Sáez, Taking cube roots on $ \mathbb{Z}_m$. Appl. Math. Lett. 15 (2002), 703-708. MR 1913273 (2003e:11139)
  • 13. The PARI Group. PARI/GP, Version 2.1.0, 2002, Bordeaux. Available from http://www.parigp-home.de/.
  • 14. H. M. Stark, Effective estimates of solutions of some Diophantine equations. Acta Arith. 24, (1973), 251-259. MR 0340175 (49:4931)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 11Y50, 65A05, 11D25, 14H52

Retrieve articles in all journals with MSC (2000): 11Y50, 65A05, 11D25, 14H52


Additional Information

I. Jiménez Calvo
Affiliation: C/Virgen de las Viñas 11, 28031–Madrid, Spain
Email: ijcalvo@gmail.com

J. Herranz
Affiliation: IIIA-CSIC, Campus de la UAB, E-08193 Bellaterra, Catalonia, Spain
Email: jherranz@iiia.csic.es

G. Sáez
Affiliation: Dept. de Matemàtica Aplicada IV, Universitat Politècnica de Catalunya, c/Jordi Girona, 1-3, 08034-Barcelona, Spain
Email: german@ma4.upc.es

DOI: https://doi.org/10.1090/S0025-5718-09-02240-6
Keywords: Hall's conjecture, Mordell's equation
Received by editor(s): April 18, 2005
Received by editor(s) in revised form: November 11, 2008
Published electronically: February 13, 2009
Article copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society