Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Two-cover descent on hyperelliptic curves


Authors: Nils Bruin and Michael Stoll
Journal: Math. Comp. 78 (2009), 2347-2370
MSC (2000): Primary 11G30; Secondary 14H40.
DOI: https://doi.org/10.1090/S0025-5718-09-02255-8
Published electronically: March 11, 2009
MathSciNet review: 2521292
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We describe an algorithm that determines a set of unramified covers of a given hyperelliptic curve, with the property that any rational point will lift to one of the covers. In particular, if the algorithm returns an empty set, then the hyperelliptic curve has no rational points. This provides a relatively efficiently tested criterion for solvability of hyperelliptic curves. We also discuss applications of this algorithm to curves of genus $ 1$ and to curves with rational points.


References [Enhancements On Off] (What's this?)

  • [1] The MAGMA computer algebra system is described in Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235-265. MR 1484478
  • [2] N. R. Bruin, Chabauty methods and covering techniques applied to generalized Fermat equations, CWI Tract, vol. 133, Stichting Mathematisch Centrum, Centrum voor Wiskunde en Informatica, Amsterdam, 2002. Dissertation, University of Leiden, Leiden, 1999. MR 1916903 (2003i:11042)
  • [3] Nils Bruin, Chabauty methods using elliptic curves, J. Reine Angew. Math. 562 (2003), 27-49. MR 2011330 (2004j:11051)
  • [4] Nils Bruin, Some ternary Diophantine equations of signature $ (n,n,2)$, Discovering mathematics with Magma Algorithms Comput. Math., vol. 19, Springer, Berlin, 2006, pp. 63-91. MR 2278923 (2007m:11047)
  • [5] Nils Bruin and Noam D. Elkies, Trinomials $ ax\sp 7+bx+c$ and $ ax\sp 8+bx+c$ with Galois groups of order $ 168$ and $ 8\cdot 168$, Algorithmic number theory (Sydney, 2002) Lecture Notes in Comput. Sci., vol. 2369, Springer, Berlin, 2002, pp. 172-188. MR 2041082 (2005d:11094)
  • [6] Nils Bruin and E. Victor Flynn, Towers of $ 2$-covers of hyperelliptic curves, Trans. Amer. Math. Soc. 357 (2005), no. 11, 4329-4347 (electronic). MR 2156713 (2006k:11118)
  • [7] Nils Bruin and Michael Stoll, The Mordell-Weil sieve: Proving non-existence of rational points on curves, in preparation.
  • [8] Nils Bruin and Michael Stoll, Deciding existence of rational points on curves: An experiment, Experiment. Math. 17 (2008), no. 2, 181-189. MR 2433884
  • [9] Nils Bruin and Michael Stoll, Electronic resources, 2008, http://www.cecm.sfu.ca/~nbruin/twocovdesc.
  • [10] J. W. S. Cassels, Lectures on elliptic curves, London Mathematical Society Student Texts, vol. 24, Cambridge University Press, Cambridge, 1991. MR 1144763 (92k:11058)
  • [11] Claude Chabauty, Sur les points rationnels des courbes algébriques de genre supérieur à l'unité, C. R. Acad. Sci. Paris 212 (1941), 882-885 (French). MR 0004484 (3:14d)
  • [12] C. Chevalley and A. Weil, Un théorème d'arithmétique sur les courbes algébriques, C. R. Acad. Sci. Paris 195 (1932), 570-572.
  • [13] Robert F. Coleman, Effective Chabauty, Duke Math. J. 52 (1985), no. 3, 765-770. MR 808103 (87f:11043)
  • [14] E. V. Flynn, A flexible method for applying Chabauty's theorem, Compositio Math. 105 (1997), no. 1, 79-94. MR 1436746 (97m:11083)
  • [15] E. Victor Flynn and Joseph L. Wetherell, Finding rational points on bielliptic genus $ 2$ curves, Manuscripta Math. 100 (1999), no. 4, 519-533. MR 1734798 (2001g:11098)
  • [16] J. R. Merriman, S. Siksek, and N. P. Smart, Explicit $ 4$-descents on an elliptic curve, Acta Arith. 77 (1996), no. 4, 385-404. MR 1414518 (97j:11027)
  • [17] Bjorn Poonen, Heuristics for the Brauer-Manin obstruction for curves, Experiment. Math. 15 (2006), no. 4, 415-420.
  • [18] Bjorn Poonen and Edward F. Schaefer, Explicit descent for Jacobians of cyclic covers of the projective line, J. Reine Angew. Math. 488 (1997), 141-188. MR 1465369 (98k:11087)
  • [19] Bjorn Poonen, Edward F. Schaefer, and Michael Stoll, Twists of $ X(7)$ and primitive solutions to $ x^2 + y^3 = z^7$, Duke Math. J. 137 (2007), 103-158.
  • [20] Bjorn Poonen and Michael Stoll, The Cassels-Tate pairing on polarized abelian varieties, Ann. of Math. (2) 150 (1999), no. 3, 1109-1149. MR 1740984 (2000m:11048)
  • [21] Bjorn Poonen and Michael Stoll, A local-global principle for densities, Topics in number theory (University Park, PA, 1997) Math. Appl., vol. 467, Kluwer Acad. Publ., Dordrecht, 1999, pp. 241-244. MR 1691323 (2000e:11082)
  • [22] Joseph H. Silverman, The arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 106, Springer-Verlag, New York, 1986. MR 817210 (87g:11070)
  • [23] Sebastian Stamminger, Explicit $ 8$-descent on elliptic curves, International University Bremen, 2005, http://www.jacobs-university.de/research/dissertations/. (Ph.D. thesis).
  • [24] Michael Stoll, Implementing $ 2$-descent for Jacobians of hyperelliptic curves, Acta Arith. 98 (2001), no. 3, 245-277. MR 1829626 (2002b:11089)
  • [25] Michael Stoll, Finite descent obstructions and rational points on curves, Algebra Number Theory 1 (2007), no. 4, 349-391. MR 2368954 (2008i:11086)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 11G30, 14H40.

Retrieve articles in all journals with MSC (2000): 11G30, 14H40.


Additional Information

Nils Bruin
Affiliation: Department of Mathematics, Simon Fraser University, Burnaby, BC, Canada V5A 1S6
Email: nbruin@sfu.ca

Michael Stoll
Affiliation: Mathematisches Institut, Universität Bayreuth, 95440 Bayreuth, Germany
Email: Michael.Stoll@uni-bayreuth.de

DOI: https://doi.org/10.1090/S0025-5718-09-02255-8
Keywords: Local-global obstruction, rational points, hyperelliptic curves, descent
Received by editor(s): March 31, 2008
Received by editor(s) in revised form: October 21, 2008
Published electronically: March 11, 2009
Additional Notes: The research of the first author was supported by NSERC
Article copyright: © Copyright 2009 American Mathematical Society

American Mathematical Society