Mathematics of Computation

This journal is devoted to research articles of the highest quality in computational mathematics. Areas covered include numerical analysis, computational discrete mathematics, including number theory, algebra and combinatorics, and related fields such as stochastic numerical methods. Articles must be of significant computational interest and contain original and substantial mathematical analysis or development of computational methodology. Reviews of books in areas related to computational mathematics are also included.

Submission information. See Information for Authors at the end of this issue.

Publisher Item Identifier. The Publisher Item Identifier (PII) appears at the top of the first page of each article published in this journal. This alphanumeric string of characters uniquely identifies each article and can be used for future cataloging, searching, and electronic retrieval.

Postings to the AMS website. Articles are posted to the AMS website individually after proof is returned from authors and before appearing in an issue.

Subscription information. Mathematics of Computation is published quarterly. Beginning in January 1996 Mathematics of Computation is accessible from www.ams.org/journals/. Subscription prices for Volume 78 (2009) are as follows: for paper delivery, $530 list, $424 institutional member, $477 corporate member, $345 member of CBMS organizations; $318 individual member; for electronic delivery, $477 list, $382 institutional member, $429 corporate member, $310 member of CBMS organizations, $286 individual member. Upon request, subscribers to paper delivery of this journal are also entitled to receive electronic delivery. If ordering the paper version, add $28 for surface delivery outside the United States and India; $41 to India. Expedited delivery to destinations in North America is $30; elsewhere $77. For paper delivery a late charge of 10% of the subscription price will be imposed upon orders received from nonmembers after January 1 of the subscription year.

Back number information. For back issues see the www.ams.org/bookstore.

Subscriptions and orders should be addressed to the American Mathematical Society, P.O. Box 845904, Boston, MA 02284-5904 USA. All orders must be accompanied by payment. Other correspondence should be addressed to 201 Charles Street, Providence, RI 02904-2294 USA.

Copying and reprinting. Material in this journal may be reproduced by any means for educational and scientific purposes without fee or permission with the exception of reproduction by services that collect fees for delivery of documents and provided that the customary acknowledgment of the source is given. This consent does not extend to other kinds of copying for general distribution, for advertising or promotional purposes, or for resale. Requests for permission for commercial use of material should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, RI 02904-2294 USA. Requests can also be made by e-mail to reprint-permission@ams.org.

Excluded from these provisions is material in articles for which the author holds copyright. In such cases, requests for permission to use or reprint should be addressed directly to the author(s). (Copyright ownership is indicated in the notice in the lower right-hand corner of the first page of each article.)
Jan Maes and Peter Oswald, Multilevel finite element preconditioning for \sqrt{3} refinement .. 1869
David Mora and Rodolfo Rodríguez, A piecewise linear finite element method for the buckling and the vibration problems of thin plates ... 1891
Todd F. Dupont and Itir Mogultay, A symmetric error estimate for Galerkin approximations of time-dependent Navier-Stokes equations in two dimensions ... 1919
Ramiro Acevedo, Salim Meddahi, and Rodolfo Rodríguez, An E-based mixed formulation for a time-dependent eddy current problem . 1929
M. Asadzadeh, A. H. Schatz, and W. Wendland, A new approach to Richardson extrapolation in the finite element method for second order elliptic problems .. 1951
Kassem Mustapha and William McLean, Discontinuous Galerkin method for an evolution equation with a memory term of positive type 1975
Jiequan Li, Huazhong Tang, Gerald Warnecke, and Lumei Zhang, Local oscillations in finite difference solutions of hyperbolic conservation laws ... 1997
István Gyöngy and Nicolai Krylov, First derivatives estimates for finite-difference schemes .. 2019
Erwan Faou and Tony Lelièvre, Conservative stochastic differential equations: Mathematical and numerical analysis 2047
G. N. Milstein and M. V. Tretyakov, Solving parabolic stochastic partial differential equations via averaging over characteristics 2075
J. Čermák and J. Jánský, On the asymptotics of the trapezoidal rule for the pantograph equation ... 2107
Jian-Feng Cai, Stanley Osher, and Zuowei Shen, Convergence of the linearized Bregman iteration for \ell_1-norm minimization 2127
Ping Zhou, Annie Cuyt, and Jieqing Tan, General order multivariate Padé approximants for pseudo-multivariate functions. II 2137
Edward J. Fuselier, Francis J. Narcowich, Joseph D. Ward, and Grady B. Wright, Error and stability estimates for surface-divergence free RBF interpolants on the sphere 2157
J. Arias de Reyna and J. van de Lune, High precision computation of a constant in the theory of trigonometric series 2187
Qiu-Ming Luo, Fourier expansions and integral representations for the Apostol-Bernoulli and Apostol-Euler polynomials 2193
Jun-ichi Tamura and Shin-ichi Yasutomi, A new multidimensional continued fraction algorithm ... 2209
M. Griebel and S. Knapek, Optimized general sparse grid approximation spaces for operator equations 2223
Zhivko Nedev, An algorithm for finding a nearly minimal balanced set in \mathbb{F}_p ... 2259
William Y. C. Chen and Ernest X. W. Xia, The ratio monotonicity of the Boros-Moll polynomials .. 2269
Eric Bach, Dominic Klyve, and Jonathan P. Sorenson, Computing prime harmonic sums .. 2283
Hugo Chapdelaine, Computation of p-units in ray class fields of real quadratic number fields .. 2307
Nils Bruin and Michael Stoll, Two-cover descent on hyperelliptic curves ... 2347
Raimundas Vidūnas and Alexander V. Kitaev, Computation of highly ramified coverings ... 2371
Grigor Grigorov, Andrei Jorza, Stefan Patrikis, William A. Stein, and Corina Tarniță, Computational verification of the Birch and Swinnerton-Dyer conjecture for individual elliptic curves 2397
S. C. Coutinho and Marcos da Silva Ferreira, Algebraic solutions of Jacobi equations .. 2427
I. Jiménez Calvo, J. Herranz, and G. Sáez, A new algorithm to search for small nonzero $|x^3 - y^2|$ values 2435
Reviews and Descriptions of Tables and Books 2445
David S. Watkins 4
Abdukhalikov, Kanat, and Rudolf Scharlau. *Unimodular lattices in dimensions 14 and 15 over the Eisenstein integers*, 387
Acevedo, Ramiro, Salim Meddahi, and Rodolfo Rodríguez. *An E-based mixed formulation for a time-dependent eddy current problem*, 1929
Ariel, Gil, Bjorn Engquist, and Richard Tsai. *A multiscale method for highly oscillatory ordinary differential equations with resonance*, 929
Axelsson, Owe, Evgeny Glushkov, and Natalya Glushkova. *The local Green’s function method in singularly perturbed convection-diffusion problems*, 153
Bach, Eric, Dominic Klyve, and Jonathan P. Sorenson. *Computing prime harmonic sums*, 2283
Bartels, Sören, Christian Lubich, and Andreas Prohl. *Convergent discretization of heat and wave map flows to spheres using approximate discrete Lagrange multipliers*, 1269
Broughan, Kevin A. *Evaluating Jacquet’s GL(n) Whittaker function*, 1061
Bruin, Nils, and Michael Stoll. *Two-cover descent on hyperelliptic curves*, 2347
Bultheel, Adhemar, Ruymán Cruz-Barroso, Karl Deckers, and Pablo González-Vera. *Rational Szegő quadratures associated with Chebyshev weight functions*, 1031
Busé, Laurent, and Bernard Mourrain. *Explicit factors of some iterated resultants and discriminants*, 345
Cai, Jian-Feng, Stanley Osher, and Zuowei Shen. *Linearized Bregman iterations for compressed sensing*, 1515
Cai, Zhiqiang, and Yanqi Wu. *Convergence of the linearized Bregman iteration for l1-norm minimization*, 2127
Coffey, Mark W. *Asymptotic estimation of (2^((2n)/(1/2))): On a conjecture of Farmer and Rhoades*, 1147
Cohen, Graeme L. *Superharmonic numbers*, 421
Cruz-Barroso, Ruymán. *See Bultheel, Adhemar
Cullinan, John. *A computational approach to the 2-torsion structure of abelian threefolds*, 1825
Cuyt, Annie. *See Zhou, Ping
Debussche, Arnaud, and Jacques Printems. *Weak order for the discretization of the stochastic heat equation*, 845
Deckelnick, Klaus, and Gerhard Dziuk. *Error analysis for the elastic flow of parametrized curves*, 645
Deckers, Karl. *See Bultheel, Adhemar
Dick, Josef. *See Liu, Kwong-IP
Didenko, Victor D., and Bernd Silbermann. Computational approach to solvability of refinement equations, 1435
Dolean, Victorita, Frédéric Nataf, and Gerd Rapin. Deriving a new domain decomposition method for the Stokes equations using the Smith factorization, 789
Driver, Eric D., and John W. Jones. A targeted Martinet search, 1109
Du, Jinyuan. On the collocation methods for singular integral equations with Hilbert kernel, 891
Dubickas, Artūras, and Jonas Jankauskas. On Newman polynomials which divide no Littlewood polynomial, 327
Dubickas, Artūras, and Michael J. Mossinghoff. Lower bounds for Z-numbers, 1837
Dupont, Todd F., and Itir Mogultay. A symmetric error estimate for Galerkin approximations of time-dependent Navier-Stokes equations in two dimensions, 1919
Dziuk, Gerhard. See Deckelnick, Klaus
Eisermann, Michael. Bimonotone enumeration, 591
Elsenhans, Andreas-Stephan, and Jörg Jahnel. New sums of three cubes, 1227
Enge, Andreas. The complexity of class polynomial computation via floating point approximations, 1089
Engquist, Bjorn. See Ariel, Gil
Erricolo, D. See Larsen, T. M.
Faou, Erwan. Analysis of splitting methods for reaction-diffusion problems using stochastic calculus, 1467
Faou, Erwan, and Tony Lelièvre. Conservative stochastic differential equations: Mathematical and numerical analysis, 2047
Flammang, V. Trace of totally positive algebraic integers and integer transfinite diameter, 1119
Fukuda, Takashi, and Keiichi Komatsu. On the Iwasawa \mathbb{Z}_2-extension of $\mathbb{Q}(\sqrt[-3]{2})$, 1797
Gander, M. J. See Bennequin, D.
Gao, Shuhong, Daqing Wan, and Mingsheng Wang. Primary decomposition of zero-dimensional ideals over finite fields, 509
Gibson, Donald Jason. A covering system with least modulus 25, 1127
Glushkov, Evgeny. See Axelsson, Owe
Glushkova, Natalya. See Axelsson, Owe
Goh, Say Song, Tim N. T. Goodman, and S. L. Lee. Hybrid spline frames, 1537
González, Josep, and Jordi Guàrdia. Genus two curves with quaternionic multiplication and modular Jacobian, 575
González-Vera, Pablo. See Bultheel, Adhemar
Goodman, Tim N. T. See Goh, Say Song
Grigorov, Grigor, Andrei Jorza, Stefan Patrikis, William A. Stein, and Corina Tarniţă. Computational verification of the Birch and Swinnerton-Dyer conjecture for individual elliptic curves, 2397
Grubišić, Luka, and Jeffrey S. Ovall. On estimators for eigenvalue/eigenvector approximations, 739
Guàrdia, Jordi. See González, Josep
Guzmán, Johnny. See Cockburn, Bernardo
Gyöngy, István, and Nicolai Krylov.
First derivatives estimates for finite-difference schemes, 2019

Hagedorn, Thomas R.
Computation of Jacobsthal’s function $h(n)$ for $n < 50$, 1073

Hajdu, L., and T. Kovács.
Parallel LLL-reduction for bounding the integral solutions of elliptic Diophantine equations, 1201

Hakkarainen, Tuomas.
On the computation of class numbers of real abelian fields, 555

Halpern, Laurence, and Jérémie Szeftel.
Nonlinear nonoverlapping Schwarz waveform relaxation for semilinear wave propagation, 865

Hansen, Eskil, and Alexander Ostermann.
Exponential splitting for unbounded operators, 1485

Hansen, Eskil.
See Bennequin, D.

Hara, Masaaki, Akihiro Munemasa, and Boris Venkov.
Classification of ternary extremal self-dual codes of length 28, 1787

Hare, Kevin G.
Tiles in quasicrystals with quartic irrationality, 405

Heim, Bernhard.
Congruences for the Ramanujan function and generalized class numbers, 431

Herbich, R.
See Galloüët, T.

Hernández, M. A.
See Ezquerro, J. A.

Herranz, J.
See Calvo, I. Jiménez

Hickernell, Fred J.
See Liu, Kwong-Ip

Holst, Michael.
See Chen, Long

Hu, Jun, and Zhong-Ci Shi.
Analysis for quadrilateral MITC elements for the Reissner-Mindlin plate problem, 673

Jahnel, Jörg.
See Elsenhans, Andreas-Stephan

Jančauskas, Jonas.
See Dubickas, Artūras

Jánáský, J.
See Cermák, J.

Jones, John W.
See Driver, Eric D.

Jorza, Andrei.
See Grigorov, Grigor

Juntunen, Mika, and Rolf Stenberg.
Nitsche’s method for general boundary conditions, 1353

Karlsen, Kenneth Hvistendahl, Siddhartha Mishra, and Nils Henrik Risebro.
Well-balanced schemes for conservation laws with source terms based on a local discontinuous flux formulation, 55

Karpenkov, O. N.
Constructing multidimensional periodic continued fractions in the sense of Klein, 1687

Ketcheson, David I.
Computation of optimal monotonicity preserving general linear methods, 1497

Kim, Hyun Kwang.
Errata to “Evaluation of zeta function of the simplest cubic field at negative odd integers”, 617

Kim, Seungil, and Joseph E. Pasciak.
The computation of resonances in open systems using a perfectly matched layer, 1375

Kitaev, Alexander V.
See Vidunas, Raimundas

Kitaoka, Yoshiyuki.
A statistical relation of roots of a polynomial in different local fields, 523

Klyve, Dominic.
See Bach, Eric

Knapek, S.
See Griebel, M.

Komatsu, Keiichi.
See Fukuda, Takashi

Kós, Géza, Péter Ligeti, and Péter Sziklai.
Reconstruction of matrices from submatrices, 1733

Kouznetsov, Dmitrii.
Solution of $F(z + 1) = \exp (F(z))$ in complex z-plane, 1647

Kovács, T.
See Hajdu, L.

Krylov, Nikolai.
See Gyöngy, István

Lagomasino, G. López.
See de la Calle Ysern, B.

Languasco, A., and A. Zaccagnini.
On the constant in the Mertens product for arithmetic progressions. II: Numerical values, 315

New method to obtain small parameter power series expansions of Mathieu radial and angular functions, 255

Latché, J.-C.
See Gallouët, T.

Le Gia, Q. T., I. H. Sloan, and T. Tran.
Overlapping additive Schwarz preconditioners for elliptic PDEs on the unit sphere, 79

Lee, S. L.
See Goh, Say Song

Lelièvre, Tony.
See Faou, Erwan

Leykin, Anton, and Frank Sottile.
Galois groups of Schubert problems via homotopy computation, 1749
Li, Hengguang. *A-priori analysis and the finite element method for a class of degenerate elliptic equations*, 713

Li, Huiyuan, and Yuan Xu. *Discrete Fourier analysis on a dodecahedron and a tetrahedron*, 999

Ligeti, Péter. See Kós, Géza

Lin, Gui-Hua. *Combined Monte Carlo sampling and penalty method for stochastic nonlinear complementarity problems*, 1671

Liu, Kwong-Ip, Josef Dick, and Fred J. Hickernell. *A multivariate fast discrete Walsh transform with an application to function interpolation*, 1573

Logan, Adam, and Ronald van Luijk. *Nontrivial elements of Sha explained through K3 surfaces*, 441

Lubich, Christian. See Bartels, Sören

van Luijk, Ronald. See Logan, Adam

van de Lune, J. See de Reyna, J. Arias

Luo, Qiu-Ming. *Fourier expansions and integral representations for the Apostol-Bernoulli and Apostol-Euler polynomials*, 2193

Madureira, Alexandre L. *A multiscale finite element method for partial differential equations posed in domains with rough boundaries*, 25

Maes, Jan, and Peter Oswald. *Multilevel finite element preconditioning for \(\sqrt{3} \) refinement*, 1869

Matthews, Keith R., John P. Robertson, and Jim White. *Corrigenda to “Calculation of the regulator of \(\mathbb{Q}(\sqrt{D}) \) by use of the nearest integer continued fraction algorithm”*, 615

McLean, William. See Mustapha, Kassem

Meddahi, Salim. See Acevedo, Ramiro

Milstein, G. N., and M. V. Tretyakov. *Solving parabolic stochastic partial differential equations via averaging over characteristics*, 2075

Miret, J., R. Moreno, A. Rio, and M. Valls. *Computing the \(\ell \)-power torsion of an elliptic curve over a finite field*, 1767

Mishra, Siddhartha. See Karlsen, Kenneth Hvistendahl

Mogultay, Itir. See Dupont, Todd F.

Mora, David, and Rodolfo Rodríguez. *A piecewise linear finite element method for the buckling and the vibration problems of thin plates*, 1891

Moreno, R. See Miret, J.

Mossinghoff, Michael J. See Dubickas, Artūras

Mourrain, Bernard. See Busé, Laurent

Munemasa, Akihiro. See Harada, Masaaki

Murota, Kazuo. See Tanaka, Ken’ichi

Mustapha, Kassem, and William McLean. *Discontinuous Galerkin method for an evolution equation with a memory term of positive type*, 1975

Nair, M. Thamban. See Mahale, Pallavi

Narcowich, Francis J. See Fuselier, Edward J.

Nataf, Frédéric. See Dolean, Victorita

Nedev, Zhivko. *An algorithm for finding a nearly minimal balanced set in \(\mathbb{F}_p \)*, 2259

Olver, Sheehan. *On the convergence rate of a modified Fourier series*, 1629

O’Riordan, E. See Farrell, P. A.

Osburn, Robert, and Carsten Schneider. *Gaussian Hypergeometric series and supercongruences*, 275

Osher, Stanley. See Cai, Jian-Feng

Ostermann, Alexander. See Hansen, Eskil

Oswald, Peter. See Maes, Jan

Ovall, Jeffrey S. See Grubišić, Luka

Oyono, Roger. *Non-hyperelliptic modular Jacobians of dimension 3*, 1173

Pasciak, Joseph E. See Kim, Seungil
Paszkiewicz, A. A new prime \(p\) for which the least primitive root (mod \(p\)) and the least primitive root (mod \(p^2\)) are not equal, 1193

Patrikis, Stefan. See Grigorov, Grigor

Printems, Jacques. See Debbussche, Arnaud

Prohl, Andreas. See Bartels, Sören

Quer, Jordi. Fields of definition of building blocks, 537

Rapin, Gerd. See Dolean, Victorita

Reichel, L. See de la Calle Ysern, B.

de Reyna, J. Arias, and J. van de Lune. High precision computation of a constant in the theory of trigonometric series, 2187

Rio, A. See Miret, J.

Risebro, Nils Henrik. See Karlsen, Kenneth Hvistendahl

Robertson, John P. See Matthews, Keith R.

Rodríguez, Rodolfo. See Acevedo, Ramiro

Rodríguez, Rodolfo. See Mora, David

Rosales, J. C. See Bullejos, M.

Sáez, G. See Calvo, I. Jiménez

Scharlau, Rudolf. See Abdukhaliakov, Kanat

Schatz, A. H. See Asadzadeh, M.

Schneider, Carsten. See Osburn, Robert

Schürmann, Achill. See Sikirić, Mathieu Dutour

Schwab, Christoph, and Rob Stevenson. Space-time adaptive wavelet methods for parabolic evolution problems, 1293

Shen, Jie, and Li-Lian Wang. On spectral approximations in elliptical geometries using Mathieu functions, 815

Shen, Zuowei. See Cai, Jian-Feng

Shi, Zhong-Ci. See Hu, Jun

Shishkin, G. I. See Farrell, P. A.

Sidi, Avram. Asymptotic expansions of Gauss-Legendre quadrature rules for integrals with endpoint singularities, 241

Sikirić, Mathieu Dutour, Achill Schürmann, and Frank Vallentin. Complexity and algorithms for computing Voronoi cells of lattices, 1713

Silbermann, Bernd. See Didenko, Victor D.
da Silva Ferreira, Marcos. See Coutinho, S. C.

Sloan, Ian H., and Holger Wendland. Inf-sup condition for spherical polynomials and radial basis functions on spheres, 1319

Sloan, I. H. See Le Gia, Q. T.

Smyrlis, Yiorgos–Sokratis. Applicability and applications of the method of fundamental solutions, 1399

Sorensen, Jonathan P. See Bach, Eric

Sottile, Frank. See Leykin, Anton

Stein, William A. See Grigorov, Grigor

Stenberg, Rolf. See Juntunen, Mika

Stevenson, Rob. See Schwab, Christoph

Stevenson, Rob, and Manuel Werner. A multiplicative Schwarz adaptive wavelet method for elliptic boundary value problems, 619

Stoll, Michael. See Bruin, Nils

Sugihara, Masaaki. See Tanaka, Ken’ichiro

Sun, Wenchang. Local sampling theorems for spaces generated by splines with arbitrary knots, 225

Sun, Zhi-Wei. See Wu, Ke-Jian

Sutherland, Andrew V. A generic approach to searching for Jacobians, 485

Szeftel, Jérémie. See Halpern, Laurence

Sziklai, Péter. See Kós, Géza

Tan, Jieqing. See Zhou, Ping
Tanaka, Ken’ichi, Masaaki Sugihara, and Kazuo Murota. Function classes for successful DE-
Sinc approximations, 1553
Tang, Huazhong. See Li, Jiequan
Tarnitá, Corina. See Grigorov, Grigor
Tran, T. See Le Gia, Q. T.
Tretyakov, M. V. See Milstein, G. N.
Tsai, Richard. See Ariel, Gil
Uslenghi, P. L. E. See Larsen, T. M.
Vallentin, Frank. See Sikirić, Mathieu Dutour
Valls, M. See Miret, J.
Venkov, Boris. See Harada, Masaaki
Vidūnas, Raimundas, and Alexander V. Kitaev. Computation of highly ramified coverings, 2371
Voight, John. Shimura curves of genus at most two, 1155
Wan, Daqing. See Gao, Shuhong
Wang, Haiying. See Cockburn, Bernardo
Wang, Li-Lian. See Shen, Jie
Wang, Mingsheng. See Gao, Shuhong
Wang, Tian-jun. See Guo, Ben-yu
Wang, Yanqiu. See Cai, Zhiqiang
Ward, Joseph D. See Fuselier, Edward J.
Warnecke, Gerald. See Li, Jiequan
Weiss, Alexander, and Barbara I. Wohlmuth. A posteriori error estimator and error control for contact problems, 1237
Wendland, Holger. See Sloan, Ian H.
Wendland, W. See Asadzadeh, M.
Werner, Manuel. See Stevenson, Rob
White, Jim. See Matthews, Keith R.
Wohlmuth, Barbara I. See Weiss, Alexander
Wright, Grady B. See Fuselier, Edward J.
Wu, Ke-Jian, and Zhi-Wei Sun. Covers of the integers with odd moduli and their applications to the forms $x^n - 2^p$ and $x^2 - F_{3n}/2$, 1853
Xia, Ernest X. W. See Chen, William Y. C.
Xu, Jinchao. See Chen, Long
Xu, Shu-Fang. See Chu, Moody T.
Xu, Yuan. See Li, Huikuan
Yasutomi, Shin-ichi. See Tamura, Jun-ichi
Zaccagnini, A. See Languasco, A.
Zennaro, M. See Maset, S.
Zhang, Lumei. See Li, Jiequan
Zhou, Ping, Annie Cuyt, and Jieqing Tan. General order multivariate Padé approximants for pseudo-multivariate functions. II, 2137
Zimmermann, Paul. See Brent, Richard P.
INDEX OF REVIEWS BY AUTHOR OF WORK REVIEWED

<table>
<thead>
<tr>
<th>Author</th>
<th>Review Number</th>
<th>Classification</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chan, Raymond Hon-Fu, & Xiao-Qing Jin (Editors)</td>
<td>1</td>
<td>65F10</td>
<td>1231</td>
</tr>
<tr>
<td>Eldén, Lars</td>
<td>3</td>
<td>65F15, 65F25, 68T01</td>
<td>1867</td>
</tr>
<tr>
<td>Jin, Xiao-Qing</td>
<td>1</td>
<td>See Chan, Raymond Hon-Fu</td>
<td>1231</td>
</tr>
<tr>
<td>Mahony, R.</td>
<td>2</td>
<td>See Absil, P.-A.</td>
<td>1233</td>
</tr>
<tr>
<td>Sepulchre, R.</td>
<td>2</td>
<td>See Absil, P.-A.</td>
<td>1233</td>
</tr>
<tr>
<td>Watkins, David S.</td>
<td>4</td>
<td>65F15</td>
<td>2445</td>
</tr>
</tbody>
</table>

INDEX OF REVIEWS BY SUBJECT OF WORK REVIEWED

58-XX Global analysis, analysis on manifolds

58-02 Research exposition (monographs, survey articles)

Absil, P.-A., R. Mahony, & R. Sepulchre | 2 | Optimization algorithms on matrix manifolds | 1233 |

58Cxx Calculus on manifolds; nonlinear operators

Absil, P.-A., R. Mahony, & R. Sepulchre | 2 | Optimization algorithms on matrix manifolds | 1233 |

65-XX Numerical analysis

65F10 Iterative methods for linear systems

Chan, Raymond Hon-Fu, & Xiao-Qing Jin (Editors) | 1 | An introduction to iterative Toeplitz solvers | 1231 |

65F15 Eigenvalues, eigenvectors

Eldén, Lars | 3 | Matrix methods in data mining and pattern recognition | 1867 |

Watkins, David S. | 4 | The matrix eigenvalue problem: GR and Krylov subspace methods | 2445 |

65F25 Orthogonalization

Eldén, Lars | 3 | Matrix methods in data mining and pattern recognition | 1867 |

68-XX Computer science

68T01 General

Eldén, Lars | 3 | Matrix methods in data mining and pattern recognition | 1867 |

90-XX Operations research, mathematical programming

90-02 Research exposition (monographs, survey articles)

Absil, P.-A., R. Mahony, & R. Sepulchre | 2 | Optimization algorithms on matrix manifolds | 1233 |

90C30 Nonlinear programming

Absil, P.-A., R. Mahony, & R. Sepulchre | 2 | Optimization algorithms on matrix manifolds | 1233 |
Mathematics of Computation

This journal is devoted to research articles of the highest quality in computational mathematics. Areas covered include numerical analysis, computational discrete mathematics, including number theory, algebra and combinatorics, and related fields such as stochastic numerical methods. Articles must be of significant computational interest and contain original and substantial mathematical analysis or development of computational methodology. Reviews of books in areas related to computational mathematics are also included.

Submission information. See Information for Authors at the end of this issue.

Publisher Item Identifier. The Publisher Item Identifier (PII) appears at the top of the first page of each article published in this journal. This alphanumeric string of characters uniquely identifies each article and can be used for future cataloging, searching, and electronic retrieval.

Postings to the AMS website. Articles are posted to the AMS website individually after proof is returned from authors and before appearing in an issue.

Subscription information. Mathematics of Computation is published quarterly. Beginning in January 1996 Mathematics of Computation is accessible from www.ams.org/journals/. Subscription prices for Volume 78 (2009) are as follows: for paper delivery, $530 list, $424 institutional member, $477 corporate member, $345 member of CBMS organizations; $318 individual member; for electronic delivery, $477 list, $382 institutional member, $429 corporate member, $310 member of CBMS organizations, $286 individual member. Upon request, subscribers to paper delivery of this journal are also entitled to receive electronic delivery. If ordering the paper version, add $28 for surface delivery outside the United States and India; $41 to India. Expedited delivery to destinations in North America is $30; elsewhere $77. For paper delivery a late charge of 10% of the subscription price will be imposed upon orders received from nonmembers after January 1 of the subscription year.

Back number information. For back issues see the www.ams.org/bookstore.

Subscriptions and orders should be addressed to the American Mathematical Society, P.O. Box 845904, Boston, MA 02284-5904 USA. All orders must be accompanied by payment. Other correspondence should be addressed to 201 Charles Street, Providence, RI 02904-2294 USA.

Copying and reprinting. Material in this journal may be reproduced by any means for educational and scientific purposes without fee or permission with the exception of reproduction by services that collect fees for delivery of documents and provided that the customary acknowledgment of the source is given. This consent does not extend to other kinds of copying for general distribution, for advertising or promotional purposes, or for resale. Requests for permission for commercial use of material should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, RI 02904-2294 USA. Requests can also be made by e-mail to reprint PERMISSION@ams.org.

Excluded from these provisions is material in articles for which the author holds copyright. In such cases, requests for permission to use or reprint should be addressed directly to the author(s). (Copyright ownership is indicated in the notice in the lower right-hand corner of the first page of each article.)
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bernardo Cockburn, Johnny Guzmán, and Haiying Wang, Superconvergent discontinuous Galerkin methods for second-order elliptic problems</td>
<td>1</td>
</tr>
<tr>
<td>Alexandre L. Madureira, A multiscale finite element method for partial differential equations posed in domains with rough boundaries</td>
<td>25</td>
</tr>
<tr>
<td>Long Chen, Michael Holst, and Jinchao Xu, Convergence and optimality of adaptive mixed finite element methods</td>
<td>35</td>
</tr>
<tr>
<td>Kenneth Hvistendahl Karlsen, Siddhartha Mishra, and Nils Henrik Risebro, Well-balanced schemes for conservation laws with source terms based on a local discontinuous flux formulation</td>
<td>55</td>
</tr>
<tr>
<td>Q. T. Le Gia, I. H. Sloan, and T. Tran, Overlapping additive Schwarz preconditioners for elliptic PDEs on the unit sphere</td>
<td>79</td>
</tr>
<tr>
<td>P. A. Farrell, E. O’Riordan, and G. I. Shishkin, A class of singularly perturbed quasilinear differential equations with interior layers</td>
<td>103</td>
</tr>
<tr>
<td>Ben-yu Guo and Tian-jun Wang, Composite generalized Laguerre-Legendre spectral method with domain decomposition and its application to Fokker-Plank equation in an infinite channel</td>
<td>129</td>
</tr>
<tr>
<td>Owe Axelsson, Evgeny Glushkov, and Natalya Glushkova, The local Green’s function method in singularly perturbed convection-diffusion problems</td>
<td>153</td>
</tr>
<tr>
<td>Pallavi Mahale and M. Thamban Nair, A simplified generalized Gauss-Newton method for nonlinear ill-posed problems</td>
<td>171</td>
</tr>
<tr>
<td>D. Bennequin, M. J. Gander, and L. Halpern, A homographic best approximation problem with application to optimized Schwarz waveform relaxation</td>
<td>185</td>
</tr>
<tr>
<td>Wenchang Sun, Local sampling theorems for spaces generated by splines with arbitrary knots</td>
<td>225</td>
</tr>
<tr>
<td>Avram Sidi, Asymptotic expansions of Gauss-Legendre quadrature rules for integrals with endpoint singularities</td>
<td>241</td>
</tr>
<tr>
<td>T. M. Larsen, D. Erricolo, and P. L. E. Uslenghi, New method to obtain small parameter power series expansions of Mathieu radial and angular functions</td>
<td>255</td>
</tr>
<tr>
<td>Robert Osburn and Carsten Schneider, Gaussian Hypergeometric series and supercongruences</td>
<td>275</td>
</tr>
<tr>
<td>Moody T. Chu and Shu-Fang Xu, Spectral decomposition of real symmetric quadratic (\lambda)-matrices and its applications</td>
<td>293</td>
</tr>
<tr>
<td>A. Languasco and A. Zaccagnini, On the constant in the Mertens product for arithmetic progressions. II: Numerical values</td>
<td>315</td>
</tr>
<tr>
<td>Artūras Dubickas and Jonas Jankauskas, On Newman polynomials which divide no Littlewood polynomial</td>
<td>327</td>
</tr>
<tr>
<td>Laurent Busé and Bernard Mourrain, Explicit factors of some iterated resultants and discriminants</td>
<td>345</td>
</tr>
<tr>
<td>Kanat Abdukhalikov and Rudolf Scharlau, Unimodular lattices in dimensions 14 and 15 over the Eisenstein integers</td>
<td>387</td>
</tr>
</tbody>
</table>
Kevin G. Hare, Tiles in quasicrystals with quartic irrationality 405
Graeme L. Cohen, Superharmonic numbers .. 421
Bernhard Heim, Congruences for the Ramanujan function and generalized class numbers .. 431
Adam Logan and Ronald van Luijk, Nontrivial elements of Sha explained through K3 surfaces ... 441
Andrew V. Sutherland, A generic approach to searching for Jacobians 485
Shuhong Gao, Daqing Wan, and Mingsheng Wang, Primary decomposition of zero-dimensional ideals over finite fields 509
Yoshiyuki Kitaoka, A statistical relation of roots of a polynomial in different local fields ... 523
Jordi Quer, Fields of definition of building blocks 537
Tuomas Hakkarainen, On the computation of class numbers of real abelian fields .. 555
Josep González and Jordi Guàrdia, Genus two curves with quaternionic multiplication and modular Jacobian .. 575
Michael Eisermann, Bimonotone enumeration 591
Keith R. Matthews, John P. Robertson, and Jim White, Corrigenda to “Calculation of the regulator of \(\mathbb{Q}(\sqrt{-u}) \) by use of the nearest integer continued fraction algorithm” ... 615
Hyun Kwang Kim, Errata to “Evaluation of zeta function of the simplest cubic field at negative odd integers” 617

Vol. 78, No. 266 April 2009

Rob Stevenson and Manuel Werner, A multiplicative Schwarz adaptive wavelet method for elliptic boundary value problems 619
Klaus Deckelnick and Gerhard Dziuk, Error analysis for the elastic flow of parametrized curves .. 645
Jun Hu and Zhong-Ci Shi, Analysis for quadrilateral MITC elements for the Reissner-Mindlin plate problem 673
Hengguang Li, A-priori analysis and the finite element method for a class of degenerate elliptic equations ... 713
Luka Grubišić and Jeffrey S. Ovall, On estimators for eigenvalue/eigenvector approximations ... 739
Zhiqiang Cai and Yanqiu Wang, An error estimate for two-dimensional Stokes driven cavity flow ... 771
Victorita Dolean, Frédéric Nataf, and Gerd Rapin, Deriving a new domain decomposition method for the Stokes equations using the Smith factorization ... 789
Jie Shen and Li-Lian Wang, On spectral approximations in elliptical geometries using Mathieu functions .. 815
Arnaud Debussche and Jacques Printems, Weak order for the discretization of the stochastic heat equation 845
Laurence Halpern and Jérémie Szeftel, Nonlinear nonoverlapping Schwarz waveform relaxation for semilinear wave propagation 865
Jinyuan Du, On the collocation methods for singular integral equations with Hilbert kernel .. 891
Gil Ariel, Bjorn Engquist, and Richard Tsai, A multiscale method for highly oscillatory ordinary differential equations with resonance . 929
S. Maset and M. Zennaro, Unconditional stability of explicit exponential Runge-Kutta methods for semi-linear ordinary differential equations .. 957
B. de la Calle Ysern, G. López Lagomasino, and L. Reichel, Stieltjes-type polynomials on the unit circle .. 969
Huiyuan Li and Yuan Xu, Discrete Fourier analysis on a dodecahedron and a tetrahedron .. 999
Adhemar Bultheel, Ruymán Cruz-Barroso, Karl Deckers, and Pablo González-Vera, Rational Szegő quadratures associated with Chebychev weight functions ... 1031
Kevin A. Broughan, Evaluating Jacquet’s GL(n) Whittaker function 1061
Thomas R. Hagedorn, Computation of Jacobsthal’s function \(h(n) \) for \(n < 50 \) .. 1073
Andreas Enge, The complexity of class polynomial computation via floating point approximations ... 1089
Eric D. Driver and John W. Jones, A targeted Martinet search 1109
V. Flammang, Trace of totally positive algebraic integers and integer transfinite diameter .. 1119
Donald Jason Gibson, A covering system with least modulus 25 1127
Mark W. Coffey, Asymptotic estimation of \(\xi^{(2n)}(1/2) \): On a conjecture of Farmer and Rhoades .. 1147
John Voight, Shimura curves of genus at most two 1155
Roger Oyono, Non-hyperelliptic modular Jacobians of dimension 3 1173
A. Paszkiewicz, A new prime \(p \) for which the least primitive root \(\text{(mod } p \) and the least primitive root \(\text{(mod } p^2 \) are not equal 1193
Richard P. Brent and Paul Zimmermann, Ten new primitive binary trinomials ... 1197
L. Hajdu and T. Kovács, Parallel LLL-reduction for bounding the integral solutions of elliptic Diophantine equations 1201
M. Bullejos and J. C. Rosales, Proportionally modular diophantine inequalities and the Stern-Brocot tree .. 1211
Andreas-Stephan Elsenhans and Jörg Jahnel, New sums of three cubes 1227
Reviews and Descriptions of Tables and Books 1231

Raymond Hon-Fu Chan and Xiao-Qing Jin, Editors 1, P.-A. Absil, R. Mahony and R. Sepulchre 2
Alexander Weiss and Barbara I. Wohlmuth, A posteriori error estimator and error control for contact problems .. 1237
Sören Bartels, Christian Lubich, and Andreas Prohl, Convergent discretization of heat and wave map flows to spheres using approximate discrete Lagrange multipliers ... 1269
Christoph Schwab and Rob Stevenson, Space-time adaptive wavelet methods for parabolic evolution problems .. 1293
Ian H. Sloan and Holger Wendland, Inf-sup condition for spherical polynomials and radial basis functions on spheres 1319
T. Gallouët, R. Herbin, and J.-C. Latché, A convergent finite element-finite volume scheme for the compressible Stokes problem. Part I: The isothermal case ... 1333
Mika Juntunen and Rolf Stenberg, Nitsche’s method for general boundary conditions ... 1353
Seungil Kim and Joseph E. Pasciak, The computation of resonances in open systems using a perfectly matched layer .. 1375
Yiorgos–Sokratis Smyrlis, Applicability and applications of the method of fundamental solutions ... 1399
Victor D. Didenko and Bernd Silbermann, Computational approach to solvability of refinement equations .. 1435
Erwan Faou, Analysis of splitting methods for reaction-diffusion problems using stochastic calculus .. 1467
Eskil Hansen and Alexander Ostermann, Exponential splitting for unbounded operators ... 1485
David I. Ketcheson, Computation of optimal monotonicity preserving general linear methods ... 1497
Jian-Feng Cai, Stanley Osher, and Zuowei Shen, Linearized Bregman iterations for compressed sensing ... 1515
Say Song Goh, Tim N. T. Goodman, and S. L. Lee, Hybrid spline frames .. 1537
Ken’ichiro Tanaka, Masaaki Sugihara, and Kazuo Murota, Function classes for successful DE-Sinc approximations 1553
Kwong-Ip Liu, Josef Dick, and Fred J. Hickernell, A multivariate fast discrete Walsh transform with an application to function interpolation ... 1573
Avram Sidi, Variable transformations and Gauss–Legendre quadrature for integrals with endpoint singularities 1593
J. A. Ezquerro and M. A. Hernández, An improvement of the region of accessibility of Chebyshev’s method from Newton’s method 1613
Sheehan Olver, On the convergence rate of a modified Fourier series 1629
Dmitrii Kouznetsov, Solution of $F(z+1) = \exp (F(z))$ in complex z-plane ... 1647
Gui-Hua Lin, Combined Monte Carlo sampling and penalty method for stochastic nonlinear complementarity problems 1671
O. N. Karpenkov, Constructing multidimensional periodic continued fractions in the sense of Klein ... 1687
Mathieu Dutour Sikirić, Achill Schürmann, and Frank Vallentin, Complexity and algorithms for computing Voronoi cells of lattices 1713
Géza Kós, Péter Ligeti, and Péter Sziklai, Reconstruction of matrices from submatrices .. 1733
Anton Leykin and Frank Sottile, Galois groups of Schubert problems via homotopy computation 1749
J. Miret, R. Moreno, A. Rio, and M. Valls, Computing the ℓ-power torsion of an elliptic curve over a finite field 1767
Masaaki Harada, Akihiro Munemasa, and Boris Venkov, Classification of ternary extremal self-dual codes of length 28 1787
Takashi Fukuda and Keiichi Komatsu, On the Iwasawa λ-invariant of the cyclotomic Z2-extension of Q(√p) 1797
Andreas Enge, Computing modular polynomials in quasi-linear time 1809
John Cullinan, A computational approach to the 2-torsion structure of abelian threefolds ... 1825
Artūras Dubickas and Michael J. Mossinghoff, Lower bounds for Z-numbers .. 1837
Ke-Jian Wu and Zhi-Wei Sun, Covers of the integers with odd moduli and their applications to the forms x^m − 2^n and x^2 − F_{3n}/2 1853
Reviews and Descriptions of Tables and Books 1867
Lars Eldén 3

Vol. 78, No. 268 October 2009

Jan Maes and Peter Oswald, Multilevel finite element preconditioning for √3 refinement ... 1869
David Mora and Rodolfo Rodríguez, A piecewise linear finite element method for the buckling and the vibration problems of thin plates 1891
Todd F. Dupont and Itir Mogultay, A symmetric error estimate for Galerkin approximations of time-dependent Navier-Stokes equations in two dimensions .. 1919
Ramiro Acevedo, Salim Meddahi, and Rodolfo Rodríguez, An E-based mixed formulation for a time-dependent eddy current problem . 1929
M. Asadzadeh, A. H. Schatz, and W. Wendland, A new approach to Richardson extrapolation in the finite element method for second order elliptic problems .. 1951
Kassem Mustapha and William McLean, Discontinuous Galerkin method for an evolution equation with a memory term of positive type 1975
Jiequan Li, Huazhong Tang, Gerald Warnecke, and Lumei Zhang, Local oscillations in finite difference solutions of hyperbolic conservation laws ... 1997
István Gyöngy and Nicolai Krylov, First derivatives estimates for finite-difference schemes ... 2019
Erwan Faou and Tony Lelièvre, Conservative stochastic differential equations: Mathematical and numerical analysis 2047
G. N. Milstein and M. V. Tretyakov, Solving parabolic stochastic partial differential equations via averaging over characteristics 2075
J. Čermák and J. Jánský, On the asymptotics of the trapezoidal rule for the pantograph equation .. 2107
Jian-Feng Cai, Stanley Osher, and Zuowei Shen, Convergence of the linearized Bregman iteration for ℓ_1-norm minimization 2127
Ping Zhou, Annie Cuyt, and Jieqing Tan, General order multivariate Padé approximants for pseudo-multivariate functions. II 2137
Edward J. Fuselier, Francis J. Narcowich, Joseph D. Ward, and Grady B. Wright, Error and stability estimates for surface-divergence free RBF interpolants on the sphere 2157
J. Arias de Reyna and J. van de Lune, High precision computation of a constant in the theory of trigonometric series 2187
Qiu-Ming Luo, Fourier expansions and integral representations for the Apostol-Bernoulli and Apostol-Euler polynomials 2193
Jun-ichi Tamura and Shin-ichi Yasutomi, A new multidimensional continued fraction algorithm .. 2209
M. Griebel and S. Knapek, Optimized general sparse grid approximation spaces for operator equations 2223
Zhivko Nedev, An algorithm for finding a nearly minimal balanced set in \mathbb{F}_p ... 2259
William Y. C. Chen and Ernest X. W. Xia, The ratio monotonicity of the Boros-Moll polynomials ... 2269
Eric Bach, Dominic Klyve, and Jonathan P. Sorenson, Computing prime harmonic sums ... 2283
Hugo Chapdelaine, Computation of p-units in ray class fields of real quadratic number fields .. 2307
Nils Bruin and Michael Stoll, Two-cover descent on hyperelliptic curves .. 2347
Raimundas Vidūnas and Alexander V. Kitaev, Computation of highly ramified coverings ... 2371
Grigor Grigorov, Andrei Jorza, Stefan Patrikis, William A. Stein, and Corina Tarnita, Computational verification of the Birch and Swinnerton-Dyer conjecture for individual elliptic curves 2397
S. C. Coutinho and Marcos da Silva Ferreira, Algebraic solutions of Jacobi equations .. 2427
I. Jiménez Calvo, J. Herranz, and G. Sáez, A new algorithm to search for small nonzero $|x^3 - y^2|$ values ... 2435
Reviews and Descriptions of Tables and Books 2445
David S. Watkins 4
Editorial Information

Information on the backlog for this journal can be found on the AMS website starting from http://www.ams.org/mcom.

In an effort to make articles available as quickly as possible, articles are posted to the AMS website individually after proof is returned from authors and before appearing in an issue.

A Consent to Publish and Copyright Agreement is required before a paper will be published in this journal. After a paper is accepted for publication, the Providence office will send out a Consent to Publish and Copyright Agreement to all authors of the paper. By submitting a paper to this journal, authors certify that the results have not been submitted to nor are they under consideration for publication by another journal, conference proceedings, or similar publication.

Information for Authors

Initial submission. The AMS uses Centralized Manuscript Processing for initial submission. Authors should submit a PDF file using the Initial Manuscript Submission form found at www.ams.org/peer-review-submission, or send one copy of the manuscript to the following address: Centralized Manuscript Processing, MATHEMATICS OF COMPUTATION, 201 Charles Street, Providence, RI 02904-2294 USA. If a paper copy is being forwarded to the AMS, indicate that it is for Mathematics of Computation and include the name of the corresponding author and contact information, such as an email address or mailing address. The author may suggest an appropriate editor for his or her paper.

The first page must consist of a descriptive title, followed by an abstract that summarizes the article in language suitable for workers in the general field (algebra, analysis, etc.). The descriptive title should be short, but informative; useless or vague phrases such as “some remarks about” or “concerning” should be avoided. The abstract must be brief, reasonably self-contained, and not exceed 300 words. Included with the footnotes to the paper should be the 2000 Mathematics Subject Classification representing the primary and secondary subjects of the article. The classifications are accessible from www.ams.org/msc/. The list of classifications is also available in print starting with the 1999 annual index of Mathematical Reviews. The Mathematics Subject Classification footnote may be followed by a list of key words and phrases describing the subject matter of the article and taken from it. Journal abbreviations used in bibliographies are listed in the latest Mathematical Reviews annual index. The series abbreviations are also accessible from www.ams.org/msnhtml/serials.pdf. To help in preparing and verifying references, the AMS offers MR Lookup, a Reference Tool for Linking, at www.ams.org/mrlookup/.

Electronically prepared manuscripts. For the final submission of accepted papers, the AMS encourages use of electronically prepared manuscripts, with a strong preference for \textsc{amsslatex}. To this end, the Society has prepared \textsc{amsslatex} author packages for each AMS publication. Author packages include instructions for preparing electronic manuscripts, samples, and a style file that generates the particular design specifications of that publication series. Articles properly prepared using the \textsc{amsslatex} style file and the \texttt{\label} and \texttt{\ref} commands automatically enable extensive intra-document linking to the bibliography and other elements of the article for searching electronically on the Web. Because linking must often be added manually to electronically prepared manuscripts in other forms of \textsc{tex}, using \textsc{amsslatex} also reduces the amount of technical intervention once the files are received by the AMS. This results in fewer errors in processing and saves the author proofreading time. \textsc{amsslatex} papers also move more efficiently through the production stream, helping to minimize publishing costs.

\textsc{amsslatex} is the highly preferred format of \textsc{tex}, but author packages are also available in \textsc{amstex}. Those authors who make use of these style files from the beginning of the writing process will further reduce their own efforts. Manuscripts prepared electronically in \textsc{latex} or plain \textsc{tex} are normally not acceptable due to the high amount of technical time required to insure that the file will run properly through the AMS in-house production process.
system. \LaTeX{} users will find that \LaTeX\-\AMSTeX{} is the same as \LaTeX{} with additional commands to simplify the typesetting of mathematics, and users of plain \TeX{} should have the foundation for learning \LaTeX\-\AMSTeX{}.

Authors may retrieve an author package for *Mathematics of Computation* from www.ams.org/mcom/mcomauthorpac.html or via FTP to ftp.ams.org (login as anonymous, enter username as password, and type cd pub/author-info). The AMS Author Handbook and the Instruction Manual are available in PDF format from the author package link. The author package can also be obtained free of charge by sending email to tech-support@ams.org (Internet) or from the Publication Division, American Mathematical Society, 201 Charles Street, Providence, RI 02904-2294 USA. When requesting an author package, please specify \LaTeX\-\AMSTeX{} or \LaTeX\-\TEX{} and the publication in which your paper will appear. Please be sure to include your complete email address.

After acceptance. The final version of the electronic manuscript should be sent to the Providence office immediately after the paper has been accepted for publication. The author should also send the final version of the paper to the Managing Editor, who will forward a copy to the Providence office. Accepted electronically prepared manuscripts can be submitted via the web at www.ams.org/submit-book-journal/, sent via email to pub-submit@ams.org (Internet), or sent on diskette to the Electronic Prepress Department, American Mathematical Society, 201 Charles Street, Providence, RI 02904-2294 USA. When sending a manuscript electronically via email or diskette, please be sure to include a message indicating in which publication the paper has been accepted. No corrections will be accepted electronically. Authors must mark their changes on their proof copies and return them to the Providence office. Complete instructions on how to send files are included in the author package.

Electronic graphics. Comprehensive instructions on preparing graphics are available starting from www.ams.org/authors/journals.html. A few of the major requirements are given here.

Submit files for graphics as EPS (Encapsulated PostScript) files. This includes graphics originated via a graphics application as well as scanned photographs or other computer-generated images. If this is not possible, TIFF files are acceptable as long as they can be opened in Adobe Photoshop or Illustrator. No matter what method was used to produce the graphic, it is necessary to provide a paper copy to the AMS.

Authors using graphics packages for the creation of electronic art should also avoid the use of any lines thinner than 0.5 points in width. Many graphics packages allow the user to specify a “hairline” for a very thin line. Hairlines often look acceptable when proofed on a typical laser printer. However, when produced on a high-resolution laser imagesetter, hairlines become nearly invisible and will be lost entirely in the final printing process.

Screens should be set to values between 15% and 85%. Screens which fall outside of this range are too light or too dark to print correctly. Variations of screens within a graphic should be no less than 10%.

AMS policy on making changes to articles after posting. Articles are posted to the AMS website individually after proof is returned from authors and before appearing in an issue. To preserve the integrity of electronically published articles, once an article is individually posted to the AMS website but not yet in an issue, changes cannot be made in place in the paper. However, an “Added after posting” section may be added to the paper right before the References when there is a critical error in the content of the paper. The “Added after posting” section gives the author an opportunity to correct this type of critical error before the article is put into an issue for printing and before it is then reposted with the issue. The “Added after posting” section remains a permanent part of the paper. The AMS does not keep author-related information, such as affiliation, current address, and email address, up to date after a paper is initially posted.

Once the article is assigned to an issue, even if the issue has not yet been posted to the AMS website, corrections may be made to the paper by submitting a traditional errata
Secure manuscript tracking on the Web. Authors can track their manuscripts through the AMS journal production process using the personal AMS ID and Article ID printed in the upper right-hand corner of the Consent to Publish form sent to each author who publishes in AMS journals. Access to the tracking system is available from www.ams.org/mstrack/. An explanation of each production step is provided on the web through links from the manuscript tracking screen. Questions can be sent to mcom-query@ams.org.

\textquote{T}_{\text{\LaTeX}} files available upon request.} \textquote{T}_{\text{\LaTeX}} files are available upon request for authors by sending email to file-request@ams.org or by contacting the Electronic Prepress Department, American Mathematical Society, 201 Charles Street, Providence, RI 02904-2294 USA. The request should include the title of the paper, the name(s) of the author(s), the name of the publication in which the paper has or will appear, and the volume and issue numbers if known. The \textquote{T}_{\text{\LaTeX}} file will be sent to the author making the request after the article goes to the printer. If the requestor can receive Internet email, please include the email address to which the file should be sent. Otherwise please indicate a diskette format and postal address to which a disk should be mailed. \text{Note:} Because \textquote{T}_{\text{\LaTeX}} production at the AMS sometimes requires extra fonts and macros that are not yet publicly available, \textquote{T}_{\text{\LaTeX}} files cannot be guaranteed to run through the author’s version of \textquote{T}_{\text{\LaTeX}} without errors. The AMS regrets that it cannot provide support to eliminate such errors in the author’s \textquote{T}_{\text{\LaTeX}} environment.

Inquiries. Any inquiries concerning a paper that has been accepted for publication that cannot be answered via the manuscript tracking system mentioned above should be sent to mcom-query@ams.org or directly to the Electronic Prepress Department, American Mathematical Society, 201 Charles Street, Providence, RI 02904-2294 USA.

Editorial Committee

SUSANNE C. BRENNER, Center for Computation and Technology, Johnston Hall, Louisiana State University, Baton Rouge, LA 70803 USA; E-mail: brenner@math.lsu.edu

RONALD F. A. COOLS, Department of Computer Science, Katholieke Universiteit Leuven, Celestijnenlaan 200A, B-3001 Heverlee, Belgium; E-mail: ronald.cools@cs.kuleuven.ac.be

IGOR E. SHPARLINSKI, Department of Computing, Macquarie University, Sydney, New South Wales 2109, Australia; E-mail: igor@comp.mq.edu.au

CHI-WANG SHU, Chair. Applied Mathematics Division, Brown University, P.O. Box F, 182 George St., Providence, RI 02912-0001 USA; E-mail: mathcomp@dam.brown.edu

Board of Associate Editors

DAVID W. BOYD, Department of Mathematics, University of British Columbia, Vancouver, BC Canada V6T 1Z2; E-mail: boyd@math.ubc.ca

DANIELA CALVETTI, Department of Mathematics, Case Western Reserve University, Yost Hall, 10900 Euclid Ave., Cleveland, OH 44106; E-mail: daniela.calvetti@case.edu

ZHIMING CHEN, Institute of Computational Mathematics, Chinese Academy of Sciences, P.O. Box 2719, Beijing 100080, China; E-mail: zmchen@lsec.cc.ac.cn

JEAN-MARC COUVEIGNES, Departement de Mathematiques et Informatique, Universite Toulouse 2, 5, allees Antonio Machado, 31058 Toulouse Cedex 9, France; E-mail: couveig@univ-tlse2.fr

RICARDO G. DURAN, Department of Mathematics, University of Buenos Aires, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires, Argentina; E-mail: rduran@dm.uba.ar

IVAN P. GAVRILYUK, Berufsakademie Thuringen, Am Wartenberg 2, D-99817 Eisenach, Germany; E-mail: ipg@ba-eisenach.de

VIVETTE GIRAULT, Laboratoire Jacques-Louis Lions, Boite Courrier 187, Université de Pierre et Marie Curie, 4, place Jussieu, 75252 Paris Cedex 05, France; E-mail: girault@ann.jussieu.fr
<table>
<thead>
<tr>
<th>Authors</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. Griebel and S. Knapek</td>
<td>Optimized general sparse grid approximation spaces for operator equations</td>
<td>2223</td>
</tr>
<tr>
<td>Zhivko Nedev</td>
<td>An algorithm for finding a nearly minimal balanced set in \mathbb{F}_p</td>
<td>2259</td>
</tr>
<tr>
<td>William Y. C. Chen and Ernest X. W. Xia</td>
<td>The ratio monotonicity of the Boros-Moll polynomials</td>
<td>2269</td>
</tr>
<tr>
<td>William Y. C. Chen and Ernest X. W. Xia</td>
<td>The ratio monotonicity of the Boros-Moll polynomials</td>
<td>2269</td>
</tr>
<tr>
<td>Eric Bach, Dominic Klyve, and Jonathan P. Sorenson</td>
<td>Computing prime harmonic sums</td>
<td>2283</td>
</tr>
<tr>
<td>Hugo Chapdelaine</td>
<td>Computation of p-units in ray class fields of real quadratic number fields</td>
<td>2307</td>
</tr>
<tr>
<td>Nils Bruin and Michael Stoll</td>
<td>Two-cover descent on hyperelliptic curves</td>
<td>2347</td>
</tr>
<tr>
<td>Raimundas Vidūnas and Alexander V. Kitaev</td>
<td>Computation of highly ramified coverings</td>
<td>2371</td>
</tr>
<tr>
<td>Grigor Grigorov, Andrei Jorza, Stefan Patrikis, William A. Stein, and Corina Tarniţă</td>
<td>Computational verification of the Birch and Swinnerton-Dyer conjecture for individual elliptic curves</td>
<td>2397</td>
</tr>
<tr>
<td>S. C. Coutinho and Marcos da Silva Ferreira</td>
<td>Algebraic solutions of Jacobi equations</td>
<td>2427</td>
</tr>
<tr>
<td>I. Jiménez Calvo, J. Herranz, and G. Sáez</td>
<td>A new algorithm to search for small nonzero $</td>
<td>x^3 - y^2</td>
</tr>
<tr>
<td>Reviews and Descriptions of Tables and Books</td>
<td></td>
<td>2445</td>
</tr>
</tbody>
</table>

(Continued from back cover)
Jan Maes and Peter Oswald, Multilevel finite element preconditioning for √3 refinement ... 1869
David Mora and Rodolfo Rodríguez, A piecewise linear finite element method for the buckling and the vibration problems of thin plates ... 1891
Todd F. Dupont and Itir Mogultay, A symmetric error estimate for Galerkin approximations of time-dependent Navier-Stokes equations in two dimensions ... 1919
Ramiro Acevedo, Salim Meddahi, and Rodolfo Rodríguez, An E-based mixed formulation for a time-dependent eddy current problem 1929
M. Asadzadeh, A. H. Schatz, and W. Wendland, A new approach to Richardson extrapolation in the finite element method for second order elliptic problems ... 1951
Kassem Mustapha and William McLean, Discontinuous Galerkin method for an evolution equation with a memory term of positive type 1975
Jiequan Li, Huazhong Tang, Gerald Warnecke, and Lumei Zhang, Local oscillations in finite difference solutions of hyperbolic conservation laws .. 1997
István Gyöngy and Nicolai Krylov, First derivatives estimates for finite-difference schemes ... 2019
Erwan Faou and Tony Lelièvre, Conservative stochastic differential equations: Mathematical and numerical analysis 2047
G. N. Milstein and M. V. Tretyakov, Solving parabolic stochastic partial differential equations via averaging over characteristics 2075
J. Čermák and J. Jánský, On the asymptotics of the trapezoidal rule for the pantograph equation ... 2107
Jian-Feng Cai, Stanley Osher, and Zuowei Shen, Convergence of the linearized Bregman iteration for ℓ1-norm minimization 2127
Ping Zhou, Annie Cuyt, and Jieqing Tan, General order multivariate Padé approximants for pseudo-multivariate functions. II 2137
Edward J. Fuselier, Francis J. Narcowich, Joseph D. Ward, and Grady B. Wright, Error and stability estimates for surface-divergence free RBF interpolants on the sphere 2157
J. Arias de Reyna and J. van de Lune, High precision computation of a constant in the theory of trigonometric series 2187
Qiu-Ming Luo, Fourier expansions and integral representations for the Apostol-Bernoulli and Apostol-Euler polynomials 2193
Jun-ichi Tamura and Shin-ichi Yasutomi, A new multidimensional continued fraction algorithm ... 2209

(Continued on inside back cover)