Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



High order discretization schemes for the CIR process: Application to affine term structure and Heston models

Author: Aurélien Alfonsi
Journal: Math. Comp. 79 (2010), 209-237
MSC (2000): Primary 60H35, 65C30; Secondary 91B70
Published electronically: June 15, 2009
MathSciNet review: 2552224
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper presents weak second and third order schemes for the Cox-Ingersoll-Ross (CIR) process, without any restriction on its parameters. At the same time, it gives a general recursive construction method for getting weak second order schemes that extend the one introduced by Ninomiya and Victoir. Combine both these results, this allows us to propose a second order scheme for more general affine diffusions. Simulation examples are given to illustrate the convergence of these schemes on CIR and Heston models.

References [Enhancements On Off] (What's this?)

  • 1. Aurélien Alfonsi, On the discretization schemes for the CIR (and Bessel squared) processes, Monte Carlo Methods Appl. 11 (2005), no. 4, 355–384. MR 2186814, 10.1163/156939605777438569
  • 2. Andersen, L. (2008). Simple and efficient simulation of the Heston stochastic volatility model. Journal of Computational Finance, Vol. 11, No. 3.
  • 3. Leif B. G. Andersen and Vladimir V. Piterbarg, Moment explosions in stochastic volatility models, Finance Stoch. 11 (2007), no. 1, 29–50. MR 2284011, 10.1007/s00780-006-0011-7
  • 4. V. Bally and D. Talay, The law of the Euler scheme for stochastic differential equations. I. Convergence rate of the distribution function, Probab. Theory Related Fields 104 (1996), no. 1, 43–60. MR 1367666, 10.1007/BF01303802
  • 5. Abdel Berkaoui, Mireille Bossy, and Awa Diop, Euler scheme for SDEs with non-Lipschitz diffusion coefficient: strong convergence, ESAIM Probab. Stat. 12 (2008), 1–11 (electronic). MR 2367990, 10.1051/ps:2007030
  • 6. Bossy, M. and Diop, A. (2004). An efficient discretisation scheme for one dimensional SDEs with a diffusion coefficient function of the form $ \vert x\vert^a$, $ a$ in [1/2,1). RR-5396, INRIA, Décembre 2004.
  • 7. Damiano Brigo and Aurélien Alfonsi, Credit default swap calibration and derivatives pricing with the SSRD stochastic intensity model, Finance Stoch. 9 (2005), no. 1, 29–42. MR 2210926, 10.1007/s00780-004-0131-x
  • 8. Damiano Brigo and Fabio Mercurio, Interest rate models—theory and practice, 2nd ed., Springer Finance, Springer-Verlag, Berlin, 2006. With smile, inflation and credit. MR 2255741
  • 9. Broadie, M. and Kaya, Ö. (2003). Exact simulation of stochastic volatility and other affine jump diffusion processes, Working Paper.
  • 10. John C. Cox, Jonathan E. Ingersoll Jr., and Stephen A. Ross, A theory of the term structure of interest rates, Econometrica 53 (1985), no. 2, 385–407. MR 785475, 10.2307/1911242
  • 11. Dai, Q. and Singleton, K. (2000). Specification Analysis of Affine Term Structure Models, The Journal of Finance, Vol. LV, No. 5, pp. 1943-1978.
  • 12. G. Deelstra and F. Delbaen, Convergence of discretized stochastic (interest rate) processes with stochastic drift term, Appl. Stochastic Models Data Anal. 14 (1998), no. 1, 77–84. MR 1641781, 10.1002/(SICI)1099-0747(199803)14:1<77::AID-ASM338>3.0.CO;2-2
  • 13. Diop, A. (2003). Sur la discrétisation et le comportement à petit bruit d'EDS multidimensionnelles dont les coefficients sont à dérivées singulières, Ph.D. Thesis, INRIA. (available at
  • 14. Paul Glasserman, Monte Carlo methods in financial engineering, Applications of Mathematics (New York), vol. 53, Springer-Verlag, New York, 2004. Stochastic Modelling and Applied Probability. MR 1999614
  • 15. Heston, S. (1993). A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options. The Review of Financial Studies, Vol. 6, No. 2, pp. 327-343.
  • 16. Ioannis Karatzas and Steven E. Shreve, Brownian motion and stochastic calculus, 2nd ed., Graduate Texts in Mathematics, vol. 113, Springer-Verlag, New York, 1991. MR 1121940
  • 17. Christian Kahl and Henri Schurz, Balanced Milstein methods for ordinary SDEs, Monte Carlo Methods Appl. 12 (2006), no. 2, 143–170. MR 2237671, 10.1163/156939606777488842
  • 18. Lord, R., Koekkoek, R. and van Dijk, D. (2006). A comparison of biased simulation schemes for stochastic volatility models, working paper, Erasmus University Rotterdam, Rabobank International and Robeco Alternative Investments.
  • 19. Syoiti Ninomiya and Nicolas Victoir, Weak approximation of stochastic differential equations and application to derivative pricing, Appl. Math. Finance 15 (2008), no. 1-2, 107–121. MR 2409419, 10.1080/13504860701413958
  • 20. Gilbert Strang, On the construction and comparison of difference schemes, SIAM J. Numer. Anal. 5 (1968), 506–517. MR 0235754
  • 21. Denis Talay, Discrétisation d’une équation différentielle stochastique et calcul approché d’espérances de fonctionnelles de la solution, RAIRO Modél. Math. Anal. Numér. 20 (1986), no. 1, 141–179 (French, with English summary). MR 844521
  • 22. Denis Talay and Luciano Tubaro, Expansion of the global error for numerical schemes solving stochastic differential equations, Stochastic Anal. Appl. 8 (1990), no. 4, 483–509 (1991). MR 1091544, 10.1080/07362999008809220

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 60H35, 65C30, 91B70

Retrieve articles in all journals with MSC (2000): 60H35, 65C30, 91B70

Additional Information

Aurélien Alfonsi
Affiliation: CERMICS, MATHFI Project, Ecole des Ponts, 6-8 avenue Blaise Pascal, Cité Descartes, Champs sur Marne, 77455 Marne-la-vallée, France

Keywords: Simulation, discretization scheme, squared Bessel process, Cox-Ingersoll-Ross model, Heston model, Affine Term Structure Models (ATSM)
Received by editor(s): October 24, 2008
Received by editor(s) in revised form: December 16, 2008
Published electronically: June 15, 2009
Additional Notes: Most of this work was done when I was at the TU Berlin, thanks to the support of MATHEON. I would like to thank Vlad Bally (Univ. Marne-la-Vallée) and Benjamin Jourdain (Ecole des Ponts) for fruitful comments, and Victor Reutenauer (CALyon) for stimulating discussions on ATSM
Article copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.