Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

The Minkowski question mark function: explicit series for the dyadic period function and moments


Author: Giedrius Alkauskas
Journal: Math. Comp. 79 (2010), 383-418
MSC (2000): Primary 11A55, 26A30, 32A05; Secondary 40A15, 37F50, 11F37
DOI: https://doi.org/10.1090/S0025-5718-09-02263-7
Published electronically: May 12, 2009
Corrigendum: Math. Comp. 80 (2011), 2445-2454
MathSciNet review: 2552232
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Previously, several natural integral transforms of the Minkowski question mark function $ F(x)$ were introduced by the author. Each of them is uniquely characterized by certain regularity conditions and the functional equation, thus encoding intrinsic information about $ F(x)$. One of them, the dyadic period function $ G(z)$, was defined as a Stieltjes transform. In this paper we introduce a family of ``distributions'' $ F_{{\sf p}}(x)$ for $ \Re\sf p\geq 1$, such that $ F_{1}(x)$ is the question mark function and $ F_{2}(x)$ is a discrete distribution with support on $ x=1$. We prove that the generating function of moments of $ F_{\sf p}(x)$ satisfies the three-term functional equation. This has an independent interest, though our main concern is the information it provides about $ F(x)$. This approach yields the following main result: we prove that the dyadic period function is a sum of infinite series of rational functions with rational coefficients.


References [Enhancements On Off] (What's this?)

  • 1. G. ALKAUSKAS, The moments of Minkowski question mark function: the dyadic period function (submitted); arXiv:0801.0051.
  • 2. G. ALKAUSKAS, Generating and zeta functions, structure, spectral and analytic properties of the moments of the Minkowski question mark function, Involve (to appear); arXiv:0801.0056.
  • 3. G. ALKAUSKAS, An asymptotic formula for the moments of Minkowski question mark function in the interval $ [0,1]$, Lith. Math. J. 48 (4) 2008, 357-367.
  • 4. A. F. BEARDON, Iteration of rational functions, Complex analytic dynamical systems, Springer-Verlag, 1991. MR 1128089 (92j:30026)
  • 5. C. BONANNO, S. GRAFFI, S. ISOLA, Spectral analysis of transfer operators associated to Farey fractions, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 19 (1) (2008), 1-23. MR 2383559
  • 6. C. BONANNO, S. ISOLA, Orderings of the rationals and dynamical systems, Colloq. Math. (to appear); arXiv:0805.2178.
  • 7. T. BOUSCH, Connexité locale et par chemins hölderiens pour les systèmes itérés de fonctions; Available at http://topo.math.u-psud.fr/ bousch (1993) (unpublished).
  • 8. N. CALKIN, H. WILF, Recounting the rationals, Amer. Math. Monthly 107 (4) (2000), 360-363. MR 1763062 (2001d:11024)
  • 9. A. DENJOY, Sur une fonction réelle de Minkowski, J. Math. Pures Appl. 17 (1938), 105-151.
  • 10. A. DUSHISTOVA, N.G. MOSHCHEVITIN, On the derivative of the Minkowski question mark function $ ?(x)$; arXiv:0706.2219
  • 11. M.D. ESPOSTI, S. ISOLA, A. KNAUF, Generalized Farey trees, transfer operators and phase transitions, Comm. Math. Phys. 275 (2) (2007), 297-329. MR 2335777 (2008i:37043)
  • 12. R. GIRGENSOHN, Constructing singular functions via Farey fractions, J. Math. Anal. Appl. 203 (1) (1996), 127-141. MR 1412484 (97f:26006)
  • 13. P. J. GRABNER, P. KIRSCHENHOFER, R. TICHY, Combinatorial and arithmetical properties of linear numeration systems, Combinatorica 22 (2) (2002), 245-267. MR 1909085 (2003f:11113)
  • 14. M. KESSEB¨OHMER, B.O. STRATMANN, Fractal analysis for sets of non-differentiability of Minkowski's question mark function; J. Number Theory 128 (9) (2008), 2663-2686. MR 2444218
  • 15. A. YA. KHINCHIN, Continued fractions, The University of Chicago Press, 1964. MR 0161833 (28:5037)
  • 16. J.R. KINNEY, Note on a singular function of Minkowski, Proc. Amer. Math. Soc. 11 (5) (1960), 788-794. MR 0130330 (24:A194)
  • 17. S. KLAVŠZAR, U. MILUTINOVI´C, C. PETR, Stern Polynomials. Adv. in Appl. Math. 39 (1) (2007), 86-95. MR 2319565 (2008c:11033)
  • 18. J.C. LAGARIAS, The Farey shift and the Minkowski $ ?$-function, (preprint).
  • 19. J. C. LAGARIAS, Number theory and dynamical systems, The unreasonable effectiveness of number theory (Orono, ME, 1991), Proc. Sympos. Appl. Math., 46, Amer. Math. Soc. (1992), 35-72. MR 1195841 (93m:11143)
  • 20. J.C. LAGARIAS, C.P. TRESSER, A walk along the branches of the extended Farey tree, IBM J. Res. Develop. 39 (3) May (1995), 788-794. MR 2361372
  • 21. M. LAMBERGER, On a family of singular measures related to Minkowski's $ ?(x)$ function, Indag. Math. (N.S.), 17 (1) (2006), 45-63. MR 2337164 (2008g:60116)
  • 22. J.B. LEWIS, Spaces of holomorphic functions equivalent to the even Maass cusp forms, Invent. Math. 127 (2) (1997), 271-306. MR 1427619 (98f:11036)
  • 23. J.B. LEWIS, D. ZAGIER, Period functions for Maass wave forms. I, Ann. of Math. (2) 153 (1) (2001), 191-258. MR 1826413 (2003d:11068)
  • 24. H. OKAMOTO, M. WUNSCH, A geometric construction of continuous, strictly increasing singular functions, Proc. Japan Acad. Ser. A Math. Sci. 83 (7) (2007), 114-118. MR 2361422 (2008k:26008)
  • 25. G. PANTI, Multidimensional continued fractions and a Minkowski function, Monatsh. Math. 154 (3) (2008), 247-264. MR 2413304
  • 26. J. PARAD´IS, P. VIADER, L. BIBILONI, The derivative of Minkowski's $ ?(x)$ function. J. Math. Anal. Appl. 253 (1) (2001), 107-125. MR 1804596 (2002c:11092)
  • 27. J. PARAD´IS, P. VIADER, L. BIBILONI, A new light on Minkowski's $ ?(x)$ function, J. Number Theory 73 (2) (1998), 212-227. MR 1658027 (2000a:11104)
  • 28. G. RAMHARTER, On Minkowski's singular function, Proc. Amer. Math. Soc., 99 (3) (1987), 596-597. MR 875407 (88c:11013)
  • 29. S. REESE, Some Fourier-Stieltjes coefficients revisited. Proc. Amer. Math. Soc. 105 (2) (1989), 384-386. MR 938913 (89i:42020)
  • 30. F. RYDE, On the relation between two Minkowski functions, J. Number Theory, 17 (1) (1983), 47-51. MR 712967 (85b:11008)
  • 31. R. SALEM, On some singular monotonic functions which are strictly increasing, Trans. Amer. Math. Soc. 53 (3) (1943), 427-439. MR 0007929 (4:217b)
  • 32. B. SOLOMYAK, On the `Mandelbrot set' for pairs of linear maps: Asymptotic self-similarity, Nonlinearity 18 (5) (2005), 1927-1943. MR 2164725 (2006d:37086)
  • 33. R. F. TICHY, J. UITZ, An extension of Minkowski's singular function, Appl. Math. Lett. 8 (5) (1995), 39-46. MR 1356295 (96i:26005)
  • 34. H. S. WALL, Analytic theory of continued fractions, D. Van Nostrand Company, Inc., New York, N. Y., 1948. MR 0025596 (10:32d)
  • 35. G. N. WATSON, A treatise on the theory of Bessel functions, 2nd ed. Cambridge University Press, 1996. MR 1349110 (96i:33010)
  • 36. An exhaustive bibliography on the Minkowski question mark function, Available at http://www.maths.nottingham.ac.uk/personal/pmxga2/minkowski.htm

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 11A55, 26A30, 32A05, 40A15, 37F50, 11F37

Retrieve articles in all journals with MSC (2000): 11A55, 26A30, 32A05, 40A15, 37F50, 11F37


Additional Information

Giedrius Alkauskas
Affiliation: The Department of Mathematics and Informatics, Vilnius University, Naugarduko 24, Vilnius, Lithuania and Max-Planck-Institut für Mathematik, Vivatsgasse 7, 53111 Bonn, Germany
Email: giedrius.alkauskas@gmail.com

DOI: https://doi.org/10.1090/S0025-5718-09-02263-7
Keywords: The Minkowski question mark function, the dyadic period function, three-term functional equation, analytic theory of continued fractions, Julia sets, the Farey tree
Received by editor(s): September 15, 2008
Received by editor(s) in revised form: January 17, 2009
Published electronically: May 12, 2009
Article copyright: © Copyright 2009 American Mathematical Society

American Mathematical Society