Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 

 

The norm estimates for the $ q$-Bernstein operator in the case $ q>1$


Authors: Heping Wang and Sofiya Ostrovska
Journal: Math. Comp. 79 (2010), 353-363
MSC (2000): Primary 46E15, 26A12, 47A30; Secondary 26D05, 41A10
Published electronically: July 2, 2009
MathSciNet review: 2552230
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The $ q$-Bernstein basis with $ 0<q<1$ emerges as an extension of the Bernstein basis corresponding to a stochastic process generalizing Bernoulli trials forming a totally positive system on $ [0,1].$ In the case $ q>1,$ the behavior of the $ q$-Bernstein basic polynomials on $ [0,1]$ combines the fast increase in magnitude with sign oscillations. This seriously complicates the study of $ q$-Bernstein polynomials in the case of $ q>1.$

The aim of this paper is to present norm estimates in $ C[0,1]$ for the $ q$-Bernstein basic polynomials and the $ q$-Bernstein operator $ B_{n,q}$ in the case $ q>1.$ While for $ 0<q\leq 1,\;\;\Vert B_{n,q}\Vert=1$ for all $ n\in \mathbb{N},$ in the case $ q>1,$ the norm $ \Vert B_{n,q}\Vert$ increases rather rapidly as $ n\rightarrow \infty .$ We prove here that $ \Vert B_{n,q}\Vert\sim C_{q} q^{n(n-1)/2}/n,\;\;n \rightarrow \infty \;\;$with $ \;\;C_{q}=2 (q^{-2};q^{-2})_{\infty }/e.$ Such a fast growth of norms provides an explanation for the unpredictable behavior of $ q$-Bernstein polynomials $ (q>1)$ with respect to convergence.


References [Enhancements On Off] (What's this?)

  • [1] G.E. Andrews, R. Askey, R. Roy, Special Functions, Cambridge Univ. Press., Cambridge, 1999. MR 1688958 (2000g:33001)
  • [2] L. C. Biedenharn, The quantum group $ {SU}_{q}(2)$ and a $ q$-analogue of the boson operators, J. Phys. A: Math. Gen. 22 (1989), L873-L878. MR 1015226 (90k:17027)
  • [3] W. Boehm, A. Müller, On de Casteljau's algorithm, Computer Aided Geometric Design 16 (1999), 587-605. MR 1718051 (2000h:65036)
  • [4] L. Castellani , J. Wess (eds.), Quantum Groups and Their Applications in Physics, IOS Press, Amsterdam, The Netherlands, 1996. MR 1415848 (97d:81004)
  • [5] Ch. A. Charalambides, The $ q$-Bernstein basis as a $ q$-binomial distribution, Journal of Statistical Planning and Inference (in press).
  • [6] H. Gonska, The rate of convergence of bounded linear processes on spaces of continuous functions, Automat. Comput. Appl. Math. 7 (1) (1998), 38-97. MR 1886377 (2003a:41026)
  • [7] A. Il'inskii, A probabilistic approach to $ q$-polynomial coefficients, Euler and Stirling numbers I, Matematicheskaya Fizika, Analiz, Geometriya 11 (4) (2004), 434 - 448. MR 2114004 (2005h:05019)
  • [8] A. II'inskii, S.Ostrovska, Convergence of generalized Bernstein polynomials, J. Approx. Theory 116 (1) (2002), 100-112. MR 1909014 (2003e:41037)
  • [9] S. Jing, The q-deformed binomial distribution and its asymptotic behaviour, J. Phys. A: Math. Gen. 27 (1994), 493-499. MR 1267428 (95g:81080)
  • [10] S. Lewanowicz, P. Woźny, Dual generalized Bernstein basis, J. Approx. Theory 138 (2) (2006), 129-150. MR 2201155 (2007b:41006)
  • [11] V. Lomonosov, A counterexample to the Bishop-Phelps theorem in complex spaces, Israel J. Math. 115 (2000), 25-28. MR 1749671 (2000k:46016)
  • [12] I. Ya. Novikov, Asymptotics of the roots of Bernstein polynomials used in the construction of modified Daubechies wavelets, Mathematical Notes 71 (1-2) (2002), 217-229. MR 1900797 (2002m:42043)
  • [13] S. Ostrovska, $ q$-Bernstein polynomials and their iterates, J. Approx. Theory 123 (2) (2003), 232-255. MR 1990098 (2004k:41038)
  • [14] S. Ostrovska, On the $ q$-Bernstein polynomials, Advanced Studies in Contemporary Mathematics 11 (2) (2005), 193-204. MR 2169894 (2006m:41011)
  • [15] S. Ostrovska, The approximation of logarithmic function by $ q$-Bernstein polynomials in the case $ q>1$, Numerical Algorithms 44 (2007), 69-82. MR 2322145 (2008d:41003)
  • [16] M. I. Ostrovskii, Regularizability of inverse linear operators in Banach spaces with bases, Siberian Math. J. 330 (3) (1992), 470-476. MR 1178464 (93i:47004)
  • [17] V. S. Videnskii, On $ q$-Bernstein polynomials and related positive linear operators, In: Problems of modern mathematics and mathematical education, Hertzen readings, St.-Petersburg, 2004, pp. 118-126 (Russian).
  • [18] V.S.Videnskii, On some classes of $ q$-parametric positive operators, Operator Theory: Advances and Applications 158 (2005), 213-222. MR 2147598 (2006b:41034)
  • [19] Wang Heping, Korovkin-type theorem and application, J. Approx. Theory 132 (2) (2005), 258-264. MR 2118520 (2005k:41084)
  • [20] Wang Heping, Meng Fanjun, The rate of convergence of $ q$-Bernstein polynomials for $ 0<q<1$, J. Approx. Theory 136 (2) (2005), 151-158. MR 2171684 (2006h:41007)
  • [21] Wang Heping, Voronovskaya type formulas and saturation of convergence for $ q$-Bernstein polynomials for $ 0<q<1$, J. Approx. Theory 145 (2) (2007), 182-195. MR 2312464 (2008m:41008)
  • [22] H. Wang, X.Z. Wu, Saturation of convergence for $ q$-Bernstein polynomials in the case $ q\geq 1$, J. Math. Anal. Appl. 337 (1) (2008), 744-750. MR 2356108 (2008k:41031)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 46E15, 26A12, 47A30, 26D05, 41A10

Retrieve articles in all journals with MSC (2000): 46E15, 26A12, 47A30, 26D05, 41A10


Additional Information

Heping Wang
Affiliation: School of Mathematical Sciences, Capital Normal University, Beijing 100048, People’s Republic of China
Email: wanghp@yahoo.cn

Sofiya Ostrovska
Affiliation: Atilim University, Department of Mathematics, Incek 06836, Ankara, Turkey
Email: ostrovskasofiya@yahoo.com

DOI: http://dx.doi.org/10.1090/S0025-5718-09-02273-X
Keywords: $q$-integers, $q$-binomial coefficients, $q$-Bernstein polynomials, $q$-Bernstein operator, operator norm, strong asymptotic order
Received by editor(s): December 12, 2007
Received by editor(s) in revised form: November 7, 2008
Published electronically: July 2, 2009
Additional Notes: The first author was supported by National Natural Science Foundation of China (Project no. 10871132), Beijing Natural Science Foundation (1062004), and by a grant from the Key Programs of Beijing Municipal Education Commission (KZ200810028013).
Article copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.