Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



Fast integration of highly oscillatory integrals with exotic oscillators

Authors: Shuhuang Xiang and Haiyong Wang
Journal: Math. Comp. 79 (2010), 829-844
MSC (2000): Primary 65D32, 65D30
Published electronically: August 26, 2009
MathSciNet review: 2600545
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we present an efficient Filon-type method for the integration of systems containing Bessel functions with exotic oscillators based on a diffeomorphism transformation and give applications to Airy transforms. Preliminary numerical results show the effectiveness and accuracy of the quadrature for large arguments of integral systems.

References [Enhancements On Off] (What's this?)

  • 1. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York, 1965. MR 1225604 (94b:00012)
  • 2. P. J. Davis and P. Rabinowitz, Methods of Numerical Integration, 2nd ed., Academic Press, Orlando, 1984. MR 760629 (86d:65004)
  • 3. K. C. Chung, G. A. Evans and J. R. Webster, A method to generate generalized quadrature rules for oscillatory integrals, Appl. Numer. Math. 34 (2000), 85-93. MR 1755695 (2002a:65048)
  • 4. G. A. Evans and K. C. Chung, Some theoretical aspects of generalised quadrature methods, J. Complexity 19 (2003), 272-285. MR 1984114 (2004c:41064)
  • 5. L. N. G. Filon, On a quadrature formula for trigonometric integrals, Proc. Royal Soc. Edinburgh 49 (1928), 38-47.
  • 6. E. A. Flinn, A modification of Filon's method of numerical integration, J. Assoc. Comput. Mach. 7 (1960), 181-184. MR 0114298 (22:5122)
  • 7. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 5th ed., Academic Press, Boston, MA, 1994. MR 1243179 (94g:00008)
  • 8. D. Huybrechs and S. Vandewalle, On the evaluation of highly oscillatory integrals by analytic continuation, SIAM J. Numer. Anal. 44 (2006), 1026-1048. MR 2231854 (2007d:41033)
  • 9. D. Huybrechs and S. Vandewalle, A sparse discretization for integral equation formulations of high frequency scattering problems, SIAM J. Sci. Comput., 29 (2007), 2305-2328. MR 2357616 (2008g:65178)
  • 10. A. Iserles and S. P. Nørsett, On quadrature methods for highly oscillatory integrals and their implementation, BIT 44 (2004), 755-772. MR 2211043 (2006k:65060)
  • 11. A. Iserles and S. P. Nørsett, Efficient quadrature of highly oscillatory integrals using derivatives, Proc. Royal Soc. A 461 (2005), 1383-1399. MR 2147752 (2006b:65030)
  • 12. A. Iserles, S. P. Nørsett and S. Olver, Highly oscillatory quadrature: The story so far, Proceedings of ENUMATH, Santiago de Compostela (2005) (A. Bermudez de Castro et al., eds.), Springer-Verlag, Berlin, 2006, 97-118. MR 2303638 (2008j:65029)
  • 13. A. Iserles and S. P. Nørsett, Highly oscillatory quadrature and its applications, http:// 2/ADA433730, Defense Technical Information Center, 2005.
  • 14. D. Levin, Procedures for computing one- and two-dimensional integrals of functions with rapid irregular oscillations, Math. Comp. 38 (1982), 531-538. MR 645668 (83a:65023)
  • 15. D. Levin, Fast integration of rapidly oscillatory functions, J. Comput. Appl. Math. 67 (1996), 95-101. MR 1388139 (97a:65029)
  • 16. Y. K. Luke, On the computation of oscillatory integrals, Proc. Cambridge Philos. Soc. 50 (1954), 269-277. MR 0062518 (15:992b)
  • 17. S. Olver, Moment-free numerical integration of highly oscillatory functions, IMA J. Numer. Anal. 26 (2006), 213-227. MR 2218631 (2006k:65064)
  • 18. S. Olver, Numerical approximation of vector-valued highly oscillatory integrals, BIT 47 (2007), 637-655. MR 2338536 (2008i:65043)
  • 19. S. Olver, Moment-free numerical approximation of highly oscillatory functions with stationary points, Euro. J. Appl. Math. 18 (2007), 435-447. MR 2344314 (2008g:65045)
  • 20. R. Piessens, Automatic computation of Bessel function integrals, Comput. Phys. Commun. 25 (1982), 289-295.
  • 21. R. Piessens and M. Branders, Modified Clenshaw-Curtis method for the computation of Bessel function integrals, BIT 23 (1983), 370-381. MR 705003 (85b:65019)
  • 22. E. Stein, Harmonic Analysis: Real-variable methods, orthogonality, and oscillatory integrals, Princeton University Press, Princeton, 1993. MR 1232192 (95c:42002)
  • 23. L. N. Trefethen, Is Gauss quadrature better than Clenshaw-Curtis, SIAM Review 50 (2008), 67-87. MR 2403058 (2009c:65061)
  • 24. G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, 1952. MR 1349110 (96i:33010)
  • 25. S. Xiang, Efficient Filon-type methods for $ \int_a^bf(x)e^{i\omega g(x)}dx$, Numer. Math. 105 (2007), 633-658. MR 2276763 (2008k:65051)
  • 26. S. Xiang, Numerical analysis of a fast integration method for highly oscillatory functions, BIT 47 (2007), 469-482. MR 2334051 (2008e:65096)
  • 27. S. Xiang, W. Gui and P. Mo, Numerical quadrature for Bessel transformations, Appl. Numer. Math. 58 (2008), 1247-1261. MR 2444255 (2009e:65047)
  • 28. S. Xiang and W. Gui, On generalized quadrature rules for fast oscillatory integrals, Appl. Math. Comp. 197 (2008), 60-75. MR 2396291

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 65D32, 65D30

Retrieve articles in all journals with MSC (2000): 65D32, 65D30

Additional Information

Shuhuang Xiang
Affiliation: Department of Applied Mathematics and Software, Central South University, Changsha, Hunan 410083, People’s Republic of China
Address at time of publication: Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

Haiyong Wang
Affiliation: Department of Applied Mathematics and Software, Central South University, Changsha, Hunan 410083, People’s Republic of China

Keywords: Oscillatory integrals, diffeomorphism transformation, Filon-type method.
Received by editor(s): December 28, 2007
Received by editor(s) in revised form: October 25, 2008, and March 18, 2009
Published electronically: August 26, 2009
Additional Notes: This work is supported by NSF of China (No.10771218) and the Program for New Century Excellent Talents in University, State Education Ministry, China.
Article copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society