Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



Gaussian quadrature for sums: A rapidly convergent summation scheme

Author: H. Monien
Journal: Math. Comp. 79 (2010), 857-869
MSC (2000): Primary 40A25; Secondary 33C90, 65D32, 33F05
Published electronically: July 21, 2009
MathSciNet review: 2600547
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Gaussian quadrature is a well-known technique for numerical integration. Recently Gaussian quadrature with respect to discrete measures corresponding to finite sums has found some new interest. In this paper we apply these ideas to infinite sums in general and give an explicit construction for the weights and abscissae of Gaussian formulas. The abscissae of the Gaussian summation have a very interesting asymptotic distribution function with a kink singularity. We apply the Gaussian summation technique to two problems which have been discussed in the literature. We find that the Gaussian summation has a very rapid convergence rate for the Hardy-Littlewood sum for a large range of parameters.

References [Enhancements On Off] (What's this?)

  • 1. George A. Baker, Jr., Essentials of Padé Approximants, Academic Press, NY, 1975. MR 0454459 (56:12710)
  • 2. Carl M. Bender and Steven A. Orzag, Advanced Mathematical Methods for Scientists and Engineers, McGraw-Hill, 1978 MR 0538168 (80d:00030).
  • 3. Folkmar Bornemann, Dirk Laurie, Stan Wagon, and Jörg Waldvogel, The SIAM 100-digit challenge: A study in high-accuracy numerical computing, SIAM, 2004. MR 2076374 (2005c:65002)
  • 4. F. Calogero and A. M. Perelomov, Asymptotic Density of the Zeros of Hermite Polynomials of Diverging Order, and Related Properties of Certain Singular Integral Operators, Lettere al Nuovo Cimento 23 (1978), no. 18, 650-652. MR 522774 (80f:33015)
  • 5. -, Asymptotic Density of the Zeros of Laguerre and Jacobi Polynomials, Lettere al Nuovo Cimento 23 (1978), no. 18, 653-656. MR 522775 (80f:33016)
  • 6. Germund Dahlquist, Summation formulas due to Plana, Lindelöf and Abel, and related Gauss-Christoffel rules I, BIT 37 (1997), no. 2, 256-295. MR 1450961 (99a:65010)
  • 7. Stefan Engblom, Gaussian quadratures with respect to discrete measures, Uppsala University, Technical Report 2006-007 (2006), 1-17.
  • 8. Walter Gautschi, Orthogonal Polynomials, Oxford University Press, 2004. MR 2061539 (2005e:42001)
  • 9. -, The Hardy-Littlewood Function: An Exercise in Slowly Convergent Series, J. Comput. Appl. Math. 179 (2005), 249-254. MR 2134369 (2006d:33002)
  • 10. G. H. Golub and J. H. Welsh, Calculation of Gauss quadrature rules, Math. Comp. 23 (1969), 221-230. MR 0245201 (39:6513)
  • 11. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, Academic Press, 1994. MR 1243179 (94g:00008)
  • 12. Emil Grosswald, Bessel polynomials, Lecture Notes in Mathematics, Springer, 1978. MR 520397 (80i:33013)
  • 13. Sven-Ake Gustafson, Convergence acceleration by means of numerical quadrature, BIT 6 (1966), 117-128. MR 0205430 (34:5258)
  • 14. -, A method of computing limit values, Siam J. Numer. Anal. 10 (1973), no. 6, 1080-1090. MR 0343528 (49:8269)
  • 15. D. Levin, Methods for accelerating convergence of infinite series and integrals, Ph.D. thesis, Tel Aviv University, 1975.
  • 16. M. Abramowitz and Irene A. Stegun (ed.), Handbook of Mathematical Functions, Dover, 1965.
  • 17. Gradimir V. Milovanović, Various extremal problems of Markov's type for algebraic polynomials, Facta Universitatis (Nis) 2 (1987), 7-28. MR 963780 (90c:41010)
  • 18. -, Summation of Series and Gaussian Quadratures, Approximation and Computation ISNM 119 (1994), 459-475. MR 1333636 (96c:65041)
  • 19. Gradimir V. Milovanović and Aleksandar S. Cvetković, An application of little 1/q-Jacobi polynomials to summation of certain series, Facta Univ. Ser. Math. Inform. 18 (2003), 31-46. MR 2027228 (2005b:33012)
  • 20. -, Convergence of Gaussian Quadrature Rules for Approximation of Certain Sums, Eastern J. on Approximation 10 (2004), 171-187. MR 2074906 (2005e:41079)
  • 21. Gradimir V. Milovanović, D. S. Mitrivonić, and Th. M. Rassias, Topics in polynomials: Extremal problems, inequalities, zeros, World Scientific, Singapore, New Jersey, London and Hong Kong, 1994. MR 1298187 (95m:30009)
  • 22. Arnold F. Nikiforov and Vasilii B. Uvarov, Special Functions of Mathematical Physics, Birkhäuser Verlag, Basel, 1978. MR 0538275 (81b:33001)
  • 23. William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery, Numerical Recipes in C++, Cambridge University Press, 2002. MR 1880993 (2003a:65005)
  • 24. A. Sidi, Practical Extrapolation Methods: Theory and Applications, Cambridge University Press, 2003. MR 1994507 (2004e:65005)
  • 25. J. Stoer and R. Burlisch, Introduction to numerical analysis (3rd ed.), Springer, 2002. MR 1923481 (2003d:65001)
  • 26. W. Gautschi and Gradimir V. Milovanović, Gaussian Quadrature Involving Einstein and Fermi Functions with an Application to Summation of Series, Math. Comp. 44 (1985), no. 169, 177-190. MR 771039 (86j:65028)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 40A25, 33C90, 65D32, 33F05

Retrieve articles in all journals with MSC (2000): 40A25, 33C90, 65D32, 33F05

Additional Information

H. Monien
Affiliation: Bethe Center for Theoretical Physics, Universität Bonn, Nussallee 12, 53115 Bonn, Germany

Received by editor(s): December 19, 2006
Received by editor(s) in revised form: October 16, 2008, and April 3, 2009
Published electronically: July 21, 2009
Article copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society