Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Generators of function fields of the modular curves $ X_1(5)$ and $ X_1(6)$


Authors: Chang Heon Kim and Ja Kyung Koo
Journal: Math. Comp. 79 (2010), 1047-1066
MSC (2000): Primary 11F03, 11F06, 11F11, 14H55
DOI: https://doi.org/10.1090/S0025-5718-09-02303-5
Published electronically: September 11, 2009
MathSciNet review: 2600555
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that the modular functions $ j_{1,5}$ and $ j_{1,6}$ generate function fields of the modular curves $ X_1(N)$ ($ N=5,6$, respectively) and find some number-theoretic properties of these modular functions.


References [Enhancements On Off] (What's this?)

  • 1. Borcherds, R.E., Monstrous moonshine and monstrous Lie superalgebras, Invent. Math. 109, 405-444, 1992. MR 1172696 (94f:11030)
  • 2. Conway, J.H. and Norton, S.P., Monstrous Moonshine, Bull. London Math. Soc., 11, 308-339, 1979. MR 554399 (81j:20028)
  • 3. Deuring, M., Die Typen der Multiplikatorenringe elliptischer Funktionenkörper, Abh. Math. Sem. Univ. Hamburg 14, 197-272, 1941. MR 0005125 (3:104f)
  • 4. Ferenbaugh, C.R., The genus-zero problem for $ n\vert h$-type groups, Duke Math. Journal, Vol. 72, No. 1, 31-63, 1993. MR 1242878 (94i:20030)
  • 5. Harada, K., Moonshine of Finite Groups, Ohio State University (Lecture Note).
  • 6. Husemöller, D., Elliptic Curves (Second Edition), Springer-Verlag, 2004. MR 2024529 (2005a:11078)
  • 7. Ishii, N., Construction of generators of modular function fields, Math. Japon. 28, 655-681, 1983. MR 732398 (85k:11021)
  • 8. Ishida, N. and Ishii, N., The equation for the modular curve $ X_1(N)$ derived from the equation for the modular curve $ X(N)$, Tokyo J. Math. 22, 167-175, 1999. MR 1692028 (2000m:11050)
  • 9. Kim, C.H. and Koo, J.K., On the genus of some modular curve of level $ N$, Bull. Australian Math. Soc., 54, 291-297, 1996. MR 1411539 (97m:11084)
  • 10. -, Arithmetic of the modular function $ j_{1,4}$, Acta Arith. 84, 129-143, 1998. MR 1614251 (99b:11042)
  • 11. -, Arithmetic of the modular function $ j_{1,8}$, Ramanujan J., 4, 317-338, 2000. MR 1614251 (99b:11042)
  • 12. Knapp, A.W., Elliptic Curves, Mathematical Notes 40, Princeton University Press, 1992. MR 1193029 (93j:11032)
  • 13. Koblitz, N., Introduction to Elliptic Curves and Modular Forms, Springer-Verlag, 1984. MR 766911 (86c:11040)
  • 14. Kubert, D. and Lang, S., Units in the modular function fields, Math. Ann. 218, 175-189, 1975. MR 0437497 (55:10424b)
  • 15. Lang, S., Elliptic Functions, Springer-Verlag, 1987. MR 890960 (88c:11028)
  • 16. Miyake, T., Modular Forms, Springer-Verlag, 1989. MR 1021004 (90m:11062)
  • 17. Néron, A., Modeles minimaux des variétés abéliennes sur les corps locaux et globaux, Publ. Math. I.H.E.S. no.21, 5-128, 1964. MR 0179172 (31:3423)
  • 18. Ogg, A., Survey of Modular Functions of One Variable, Lecture Notes in Mathematics 320, 1-36, Springer-Verlag 1986. MR 0337785 (49:2554)
  • 19. Rankin, R., Modular Forms and Functions, Cambridge: Cambridge University Press, 1977. MR 0498390 (58:16518)
  • 20. Schoeneberg, B., Elliptic Modular Functions, Springer-Verlag, 1973.
  • 21. Serre, J.-P. and Tate, J., Good reduction of abelian varieties, Ann. Math. 88, 492-517, 1968. MR 0236190 (38:4488)
  • 22. Shimura, G., Introduction to the Arithmetic Theory of Automorphic Functions, Publ. Math. Soc. Japan, No.11. Tokyo, Princeton, 1971. MR 0314766 (47:3318)
  • 23. Silverman, J.H., Advanced Topics in the Arithmetic of Elliptic Curves, Springer-Verlag, 1994. MR 1312368 (96b:11074)
  • 24. Thompson, J.G., Some numerology between the Fischer-Griess monster and the elliptic modular function, Bull. London Math. Soc. 11, 352-353, 1979. MR 554402 (81j:20030)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 11F03, 11F06, 11F11, 14H55

Retrieve articles in all journals with MSC (2000): 11F03, 11F06, 11F11, 14H55


Additional Information

Chang Heon Kim
Affiliation: Department of Mathematics, Hanyang University, Seoul, 133-791 Korea
Email: chhkim@hanyang.ac.kr

Ja Kyung Koo
Affiliation: Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 305-701 Korea
Email: jkkoo@math.kaist.ac.kr

DOI: https://doi.org/10.1090/S0025-5718-09-02303-5
Received by editor(s): February 16, 2006
Received by editor(s) in revised form: June 15, 2008
Published electronically: September 11, 2009
Additional Notes: The work of the first author was supported by the research fund of Hanyang University (HY-2008-N)
Article copyright: © Copyright 2009 American Mathematical Society

American Mathematical Society